APR 24, 2018 1:19 PM PDT

An Atlas of the Human Genome

WRITTEN BY: Kara Marker

Scientists from the Hebrew University of Jerusalem want to identify individual genes responsible for specific diseases. This goal inspired their new Nature Cell Biology study that focused on CRISPR-Cas9 gene editing technology and embryonic stem cells.

Colonies of human haploid embryonic stem cells. Credit: Azrieli Center for Stem Cells and Genetic Research, Hebrew University of Jerusalem

Why embryonic stem cells? These are stem cells derived from embryos, which means that they have the potential to differentiate, or turn into, any type of adult cell in the human body. This potential made them a unique player in the researchers’ quest to create an atlas of functions in the human genome.

"This study creates a new framework for the understanding of what it means to be an embryonic stem cell at the genetic level," explained lead author Dr. Atilgan Yilmaz, PhD. "The more complete a picture we have of the nature of these cells, the better chances we have for successful therapies in the clinic."

Yilmaz’s study consisting of analyzing more than 180,000 distinct mutations in the human genome. The analysis was made possible by using CRISPR-Cas9 gene editing technology paired with a new type of embryonic stem cells that contain just one copy of the human genome, as opposed to the normal two (one from the mother, one from the father). A single copy of the human genome makes gene editing more efficient.

From the analysis, researchers found that just nine percent of genes from the human genome are required for the growth and survival of human embryonic stem cells. And only five percent inhibit human embryonic stem cell growth. Among these genes are a small population that are “uniquely essential for the survival of human embryonic stem cells but not other cell types.” Researchers believe these genes to prevent embryonic stem cells from becoming cancerous or differentiating into adult cell types.

In addition to learning about the role of human genes in embryonic stem cell function, they explored genes essential for hereditary disorders and cancer during early embryonic development.

"This gene atlas enables a new functional view on how we study the human genome and provides a tool that will change the fashion by which we analyze and treat cancer and genetic disorders," explained senior author Professor Nissim Benvenisty, MD, PhD.

Sources: NIH Stem Cell Information, The Hebrew University of Jerusalem

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 03, 2020
Clinical & Molecular DX
MAR 03, 2020
Singapore charges ahead with antibody-based test for COVID-19
Researchers, biotech and pharmaceutical companies are scrambling to put an end to the coronavirus disease (COVID-19) out ...
MAR 19, 2020
Infographics
MAR 19, 2020
All You Need to Know About Coronavirus (CoVID-19)
A new coronavirus, first identified in China in December 2019, has caused an outbreak of respiratory illness that was re ...
MAR 24, 2020
Clinical & Molecular DX
MAR 24, 2020
Ultra sensitive cancer diagnostic detects DNA "fingerprints" in liquid biopsies
  Researchers from the Broad and Dana-Farber Cancer Institutes have developed a diagnostic technology that can moni ...
MAR 24, 2020
Cardiology
MAR 24, 2020
Infection of The Heart
Inflammation of the heart muscle can affect the hearts electrical system. This can reduce the heart's ability to pum ...
JUN 04, 2020
Clinical & Molecular DX
JUN 04, 2020
Low T Cells Linked To High COVID Risk
  German scientists have found a link between immune cell counts and the risk of developing severe, potentially lif ...
JUN 07, 2020
Genetics & Genomics
JUN 07, 2020
An Imaging Tool That Could Speed the Diagnosis of Rare Diseases
When children have a rare genetic disease and do not have access to whole-genome sequencing and the analysis it requires ...
Loading Comments...