JUL 17, 2018 1:02 PM PDT

Possible Therapeutic Drugs for Inherited Form of ALS

WRITTEN BY: Nouran Amin

Roughly 20,000 people in the United States are diagnosed with Lou Gehrig’s Disease, better known as amyotrophic lateral sclerosis (ALS).

ALS is a fatal disease that kills the nerve cells responsible for walking, eating and breathing; and few people survive beyond three years after initial diagnosis. Currently, patients with ALS have little options for treatment with only two drugs, as of now, are approved by the Food and Drug Administration (FDA). These drugs are shown to only modestly slow the course of the disease.

However, new research led by Washington University School of Medicine in St. Louis provides an investigational therapy for an inherited form of ALS which extends beyond survival and reverses signs of neuromuscular damage in mice and rats. These research findings, published in The Journal of Clinical Investigation, have led to a phase one/two clinical trial to examine whether the drug could benefit people with ALS whose disease is caused by mutations in a gene called SOD1.

"This drug had an impressive effect in mice and rats with just one or two doses," said Timothy Miller, MD, PhD, the David Clayson Professor of Neurology at Washington University. "We don't know yet if this works in people, but we're very hopeful. We've completed the first phase of safety testing, and now we're working on finding the right dose."

Of all diagnoses of ALS, about 10 percent of the cases are inherited and a fifth of such cases are caused by mutations in the gene SOD1. These mutations alter the production of the SOD1 protein allowing it to be overly active, suggesting that a reduction in SOD1 protein levels can help ALS patients survive with SOD1 mutations.

Collaborating with Ionis Pharmaceuticals, Miller and colleagues tested DNA-based compounds that inhibit the body from producing the SOD1 protein. The specifically tested compounds known as antisense oligonucleotides, oligos for short, in genetically modified animal models designed to carry the mutated form of the human SOD1 gene. These animals began to develop issues walking and feeding themselves by just a few months old.

The mice were administered an anti-SOD1 oligo or a placebo at day 50 with a second dose at six weeks after initial treatment. Observational analysis showed that the mice administrated the active drug maintained their weight 26 days longer living 37 days longer than those given the placebo, with an increase in life span of 22 percent.

For comparison analysis, the investigators examined the treatment in rats. Results indicated that rats, after that receiving an active oligo, fared much better than the rats that received the placebo. Overall, their weight was maintained nine weeks longer with a survival of eight to nine weeks longer.

Now, a clinical trial is in the works that will be designed to evaluate the safety and efficacy in using the oligos in people. The initial safety testing did not indicate any obvious hazards. However, researchers are testing different doses and regimens that will seek to find the most effective way to decrease SOD1 levels without resulting in unacceptable side effects.

"The phase one/two trial is really still a safety trial," Miller said. "There are not enough patients in it to really be able to accurately see an effect on disease. But we're on the cusp of testing the hypothesis that people with ALS caused by mutations in SOD1 can benefit from this treatment. We predict the effect will be good, but we can't know until we test it."

More information about the trial (number NCT02623699) can be found at clinicaltrials.gov.

Source: Washington University School of Medicine

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
JAN 15, 2020
Drug Discovery & Development
JAN 15, 2020
FDA Approves Drugs Faster than Ever- But is That Good?
The Food and Drug Administration (FDA) is approving new drugs for patients on less and less evidence thanks to special programs that streamline their appro...
JAN 20, 2020
Cancer
JAN 20, 2020
Did you know these non-cancer drugs can also fight cancer?
A study from MIT. Harvard and the Dana-Farber Cancer Institute has concluded that almost 50 existing non-oncological drugs have anti-cancer properties capa...
JAN 23, 2020
Cell & Molecular Biology
JAN 23, 2020
Scientists Engineer Venom-Producing Organoids
Snake venom is also a source of therapeutics, and a potential source of new medicines....
FEB 06, 2020
Drug Discovery & Development
FEB 06, 2020
Potential Cure for Coronavirus Found in Thailand
Doctors in Thailand have successfully treated people affected by the coronavirus via a new drug cocktail made out of antiviral, flu and HIV medication. Alt...
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
Why is it so Difficult to Develop a Vaccine for Coronavirus?
As of February 21st, 2,250 have died worldwide from Coronavirus, while 18,862 have recovered and 55,703 are currently infected. Having made top news storie...
MAR 06, 2020
Drug Discovery & Development
MAR 06, 2020
Drug Improves Cancer Therapy
Prochlorperazine (PCZ) is a drug used for psychiatric use and the therapeutic treatment of nausea but was recently found to block the internalization of mo...
Loading Comments...