JUL 24, 2018 12:20 PM PDT

Reversing Symptoms of Aging in Mice Inspires Anti-Aging Drugs

WRITTEN BY: Nouran Amin

It would be a breakthrough for science if symptoms of aging were reversed in humans. Well, researchers at the University of Alabama at Birmingham have turned the clock of time using a mouse model. Keshav Singh, Ph.D. and research colleagues were able to reverse wrinkled skin and hair loss, the hallmarks of aging, on a mouse. "To our knowledge, this observation is unprecedented," said Singh, a professor of genetics in the UAB School of Medicine.

In a matter of weeks, a mouse can develop wrinkled skin and hair loss when a mutation that leads to mitochondrial dysfunction is induced. However, restoring mitochondrial function, the mouse will returns to smoother skin and thick fur, making the mouse indistinguishable from a healthy mouse of the exact age. Most importantly, the mutation responsible for mitochondrial dysfunction occurs in a nuclear gene.

The mitochondria serve as the “powerhouse of the cell” and make 90% of the chemical energy that cells need to thrive. For humans, a decline in the function of mitochondria function is apparent during aging. Additionally, mitochondrial dysfunction can drive age-related diseases. DNA depletion is seen in human mitochondrial diseases, heart disease, diabetes, neurological disorders, and cancer. "This mouse model," Singh said, "should provide an unprecedented opportunity for the development of preventive and therapeutic drug development strategies to augment the mitochondrial functions for the treatment of aging-associated skin and hair pathology and other human diseases in which mitochondrial dysfunction plays a significant role."

The mitochondria of induced-mutated mice exhibited reduced mitochondrial DNA content, altered mitochondrial gene expression, and the instability of large complexes in mitochondria that are involved in oxidative phosphorylation. The reversal of the mutation was able to restore the mitochondrial function, which in return restored as the skin and hair pathology. This provided evidence that the mitochondria are the reversible regulators of skin aging and hair loss. "It suggests that epigenetic mechanisms underlying mitochondria-to-nucleus cross-talk must play an important role in the restoration of normal skin and hair phenotype," Singh said, who has a secondary UAB appointment as professor of pathology. "Further experiments are required to determine whether phenotypic changes in other organs can also be reversed to wildtype level by restoration of mitochondrial DNA."

Source: The University of Alabama at Birmingham

About the Author
BS/MS
Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
MAY 26, 2022
Cannabis Sciences
Cannabis Crystal Polymorphism
MAY 26, 2022
Cannabis Crystal Polymorphism
A new published commentary in the Journal of Cannabis Research indicated that cannabis crystallinity may determine level ...
JUN 15, 2022
Plants & Animals
Using Mosquito Spit to Develop Vaccines for Zika, Yellow Fever, Dengue
JUN 15, 2022
Using Mosquito Spit to Develop Vaccines for Zika, Yellow Fever, Dengue
Mosquitoes, specifically, the Aedes mosquito, can carry and transmit deadly virsues like the Zika virus and the viruses ...
JUN 20, 2022
Health & Medicine
In a Small Study, Experimental Immunotherapy Drug for Rectal Cancer has a High Success Rate
JUN 20, 2022
In a Small Study, Experimental Immunotherapy Drug for Rectal Cancer has a High Success Rate
The New England Journal of Medicine published results from a small study by researchers at New York’s Memorial Slo ...
JUL 21, 2022
Cell & Molecular Biology
'Junk' DNA May Stall Replication, Increasing Cancer Risk
JUL 21, 2022
'Junk' DNA May Stall Replication, Increasing Cancer Risk
Huge sections of the human genome are made up of highly repetitive sequences, areas where bases like ATATAT repeat in lo ...
AUG 09, 2022
Immunology
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
AUG 09, 2022
New Small Molecule May Improve Immunotherapy for a Variety of Cancers
Scientists have been trying to stimulate the immune system to fight cancer for decades, and recent years have brought ma ...
AUG 15, 2022
Drug Discovery & Development
New Drug Candidate Treats Over 300 Drug Resistant Bacteria
AUG 15, 2022
New Drug Candidate Treats Over 300 Drug Resistant Bacteria
Researchers have identified a new molecule that shows promise in inhibiting over 300 drug-resistant bacteria, including ...
Loading Comments...