JUL 24, 2018 12:20 PM PDT

Reversing Symptoms of Aging in Mice Inspires Anti-Aging Drugs

WRITTEN BY: Nouran Amin

It would be a breakthrough for science if symptoms of aging were reversed in humans. Well, researchers at the University of Alabama at Birmingham have turned the clock of time using a mouse model. Keshav Singh, Ph.D. and research colleagues were able to reverse wrinkled skin and hair loss, the hallmarks of aging, on a mouse. "To our knowledge, this observation is unprecedented," said Singh, a professor of genetics in the UAB School of Medicine.

In a matter of weeks, a mouse can develop wrinkled skin and hair loss when a mutation that leads to mitochondrial dysfunction is induced. However, restoring mitochondrial function, the mouse will returns to smoother skin and thick fur, making the mouse indistinguishable from a healthy mouse of the exact age. Most importantly, the mutation responsible for mitochondrial dysfunction occurs in a nuclear gene.

The mitochondria serve as the “powerhouse of the cell” and make 90% of the chemical energy that cells need to thrive. For humans, a decline in the function of mitochondria function is apparent during aging. Additionally, mitochondrial dysfunction can drive age-related diseases. DNA depletion is seen in human mitochondrial diseases, heart disease, diabetes, neurological disorders, and cancer. "This mouse model," Singh said, "should provide an unprecedented opportunity for the development of preventive and therapeutic drug development strategies to augment the mitochondrial functions for the treatment of aging-associated skin and hair pathology and other human diseases in which mitochondrial dysfunction plays a significant role."

The mitochondria of induced-mutated mice exhibited reduced mitochondrial DNA content, altered mitochondrial gene expression, and the instability of large complexes in mitochondria that are involved in oxidative phosphorylation. The reversal of the mutation was able to restore the mitochondrial function, which in return restored as the skin and hair pathology. This provided evidence that the mitochondria are the reversible regulators of skin aging and hair loss. "It suggests that epigenetic mechanisms underlying mitochondria-to-nucleus cross-talk must play an important role in the restoration of normal skin and hair phenotype," Singh said, who has a secondary UAB appointment as professor of pathology. "Further experiments are required to determine whether phenotypic changes in other organs can also be reversed to wildtype level by restoration of mitochondrial DNA."

Source: The University of Alabama at Birmingham

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
DEC 05, 2019
Drug Discovery & Development
DEC 05, 2019
New Injection that Treats Peanut Allergy
Peanut allergies affect between 1 and 3% of the US population. Associated with a heightened risk of severe anaphylactic reactions, oral immunotherapy is th...
DEC 06, 2019
Microbiology
DEC 06, 2019
Hybrid Antibiotic Can Destroy Dangerous Staph Biofilms
When staph begins to grow on medical devices like implants used on wounds, artificial joints, or catheters, they can cause chronic, serious infections....
DEC 08, 2019
Genetics & Genomics
DEC 08, 2019
Finding a Way to Treat Dangerous Protein Aggregates
The scientists are hopeful that this work will lead to new therapeutics for neurodegenerative disease....
DEC 23, 2019
Drug Discovery & Development
DEC 23, 2019
Eye Solution Approved for Surgical Application
As announced by the Dutch Ophthalmic Research Center in a press release, a new eye solution was recently approved by the US Food and Drug Administration fo...
JAN 16, 2020
Drug Discovery & Development
JAN 16, 2020
Fatty Acid Supplement Repairs Brain After Stroke in Mice
Researchers have found that supplements containing short chain fatty acids (SCFAs) may be able to help the brain recover from having a stroke. This comes a...
FEB 04, 2020
Cancer
FEB 04, 2020
The role of SRR in colorectal cancer
Researchers from Osaka University have recently discovered a new function of the multifunctional enzyme entitled serine racemase (SRR). According to the te...
Loading Comments...