AUG 14, 2018 9:01 PM PDT

Anticancer Drugs Help Plants Fight Infection

WRITTEN BY: Nouran Amin

Image Retrieved From Unsplash, www.unsplash.com

Drugs used for cancer treatments may now help plants fight diseases. A study conducted at Washington State University (WSU), by two plant pathologists—Lee Hadwiger and Kiwamu Tanaka, has revealed that cancer-fighting drugs used on humans can help scientists examine particular biochemical pathways that will allow plants to battle infections. The study was published in the journal Frontiers in Plant Science.

The WSU Department of Plant Pathology specifically studied anticancer drugs that hold the ability to alter the DNA of cancerous cells, when used in high concentrations, in order to slow their growth or completely inhibit it. However, when these anticancer drugs were used in low concentrations in plants, they were found to change the plant cell’s DNA by turning on genes needed for defense against pathogenic invasion. These studied anticancer drugs were DNA-specific and included actinomycin D, which is also known as ‘dactinomycin’ to the pea plant (Pisum sativum).

Image Retrieved From Unsplash, www.unsplash.com

When these drugs were administered on plants, they excreted increased levels of an antimicrobial-based substance known as pisatin; a marker for a plants defense system. The treated plants were then exposed by scientists to fungal infections where the infection stopped within hours. Although Hadwiger and Tanaka, do not predict that anticancer medications will be used on crops, they do believe that this discovery brought deeper understanding onto the interactions between chemicals and plant DNA. "We used these drugs as a tool to understand how plants defend themselves from pathogens," explains Hadwiger. "We now understand how these defense genes can be activated and are using that knowledge to develop disease resistance against fungal infections and other pathogens. We needed a tool to stop the growth process in the plants and knew actinomycin D did that," Hadwiger said. "We thought we did something wrong because it didn't work at all."

Image via Phys.Org: "The effect of different concentrations of actinomycin D applied to pea tissue. The top image is lower concentration of the drug, the bottom the highest concentration." Image Credit: WSU  

 

However, when the researchers decided to administer actinomycin D on the pea plant using low concentrations, instead of the usual dose for cancer treatments, the plant was able to fight infections. "We finally figured out what was going on with the different reactions based on high and low concentrations," Hadwiger said. Since plant and animal genes are activated in the same way, it was natural to think that drugs would exert the same actions. But, researchers later found out that plant physiology handles drugs differently than in animals and humans. DNA does not readily recognize a drug as anticancer, it is just a set of compounds that is capable of alerting its makeup. "Cells only recognize the chemistry shot at them," Hadwiger explains. "We didn't expect anticancer drugs to help plants fight pathogens. But once we understood the interaction, it made sense."

The researchers of the study do not expect anyone to use anticancer medications on their crops, however, the research nonetheless is insightful. “In basic research, when you actually understand the workings or mechanisms of something, you'll be able to apply it to real-world use," Tanaka said. "We think this will have important impacts for growers that will help better fight pathogens in the near future."

 

Source: Washington State University

About the Author
Master's (MA/MS/Other)
Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
DEC 01, 2022
Drug Discovery & Development
The Impact of AI on Drug Discovery
The Impact of AI on Drug Discovery
Artificial Intelligence, also known as “AI”, has been the talk of the past year. AI performs and responds to ...
DEC 11, 2022
Drug Discovery & Development
Novel Dermatitis Treatment Produces Long-Term Results in Clinical Trials
Novel Dermatitis Treatment Produces Long-Term Results in Clinical Trials
A monoclonal antibody drug known as rocatinlimab produced significant results in patients with moderate to severe atopic ...
DEC 14, 2022
Drug Discovery & Development
The Two Brains Exposed by Ketamine
The Two Brains Exposed by Ketamine
Researchers out of the University of Pennsylvania have discovered our brains are split in two and not just along the hem ...
DEC 28, 2022
Health & Medicine
New weapon against antimicrobial resistance strikes down bacterial cell walls
New weapon against antimicrobial resistance strikes down bacterial cell walls
For millennia the arms race between bacteria and animals was fought through mutations and evolution. As modern bacteria ...
FEB 01, 2023
Cannabis Sciences
American and Canadian Cannabis Advertising Regulations Show Lack of Consistency in the US
American and Canadian Cannabis Advertising Regulations Show Lack of Consistency in the US
A University at Buffalo study that compared cannabis marketing policies in Canada and in various U.S. states found signi ...
JAN 28, 2023
Drug Discovery & Development
Parkinson's Drug May Reduce Brain Inflammation from Depression
Parkinson's Drug May Reduce Brain Inflammation from Depression
Levodopa, a drug used to increase dopamine levels in people with Parkinson’s disease, may also reverse the effects ...
Loading Comments...