JAN 24, 2019 10:34 AM PST

Drug Blocks Toxic-Protein Production in ALS

WRITTEN BY: Nouran Amin

Individuals with ALS, frontotemporal dementia, carry a mutation in the gene C9orf72—resulting in repeated DNA sequences. These repetitions result in the production of toxic proteins that are associated with the development of ALS. Now, a new study aims to target a stress response with a known drug that may result in a decrease of toxic-protein production. "Both cellular stress and over-excitation eventually converge into the integrated stress response,” explains first author and graduate student, Thomas Westergard.

Learn more about ALS:

"Understanding what triggers toxic proteins production helped us hone in on drugs that could block them in laboratory tests," says co-senior author Aaron Haeusler, PhD, an Assistant Professor of Neuroscience within the Vickie & Jack Farber Institute for Neuroscience. Specifically, the researchers showed that the stress responses that trigger toxic protein production are similar to what happens during a seizure event.

The known drug used in the study is called ‘Trazodone’ and is currently approved for the treatment of depression and known to act on stress response. Trazodone was tested on models of the disease and was found to indeed inhibit toxic protein production of toxic protein in a cellular model contained the mutation. "This is a significant step forward in our collaborative approach," said co-author Dr. Piera Pasinelli, PhD, who lead the Jefferson Weinberg ALS Center. "Working together allowed us to speed up the research process getting from the identification of the "pathogenic stress" to testing a potentially useful drug. ALS is a complex and heterogenous disease that needs this collaborative approach, with each lab contributing its own expertise, to fill the gaps and to put together this complex puzzle in a systematic and efficient way.”

credit: healthiculture.com

Researchers are now looking forward to expand their studies for other compounds that might work better than trazodone. Results of the study were published in EMBO Molecular Medicine.

Source: Science Daily

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
MAY 26, 2020
Drug Discovery & Development
MAY 26, 2020
Eliminating Drug Side-Effects
Can we live in a world that completely eliminates side-effects from therapeutics? Well, scientists from Hong Kong Baptis ...
MAY 28, 2020
Cancer
MAY 28, 2020
The Oncogenic Hazard of a Potential Alzheimer's Treatment
Breast cancer remains one of the most common cancers around the world. Triple-Negative Breast Cancer (TNBC) is a sub-typ ...
JUN 06, 2020
Drug Discovery & Development
JUN 06, 2020
How Do Psychedelics Work?
The claustrum meaning “hidden or shut away" is a unique and often an undiscussed region of the brain. It cons ...
JUN 18, 2020
Drug Discovery & Development
JUN 18, 2020
FDA Cancels Emergency Approval for Hydroxychloroquine
The US Food and Drug Administration (FDA) has decided to cancel emergency use authorization for Hydroxychloroquine and C ...
JUN 18, 2020
Drug Discovery & Development
JUN 18, 2020
A Fat Burning Molecule That Works?
Obesity is a US epidemic affecting more than 40 percent of the adults and with a wide array of complications one being e ...
JUN 29, 2020
Drug Discovery & Development
JUN 29, 2020
Staring into Deep Red Light Improves Eyesight
Researchers from UCL have found that staring into a deep red light for just three minutes per day can significantly impr ...
Loading Comments...