JUN 10, 2019 10:01 AM PDT

Novel Treatments for Auto-immune Disorders

WRITTEN BY: Nouran Amin

A recent research study examined a library of almost 300,000 small molecules to search for a molecule that may be a potential target for the human GMP-AMP synthase (cGAS)—an enzyme that can detect and bind to cytosolic DNA and initiating a chain reaction leading to immune activation with the result of the destruction of the DNA-shedding pathogen.

Through their initial screening, researchers were able to identify two molecules that showed some activity against cGAS.

“The hits from library compounds were a great starting point, but they were not potent enough,” said postdoctoral associate Lodoe Lama. “So we used them as molecular scaffolds on which to make improvements, altering their structures in ways that would increase potency and also reduce toxicity.”

In collaboration with Tri-Institutional Therapeutics Discovery Institute, scientists created three compounds that inhibited cGAS activity in human cells. Further analytical studies by researchers at Memorial Sloan Kettering Cancer Centre showed that compounds block cGAS activation by wedging into a critical pocket.

The significance of inhibiting cGAS would be of critical therapeutic relevance to those with autoimmune diseases who have few treatment options. Currently, compounds are being optimized for prospective use in patients particularly those diagnosed with a rare genetic disease called Aicardi-Goutières syndrome. Individuals with Aicardi-Goutières syndrome have an abnormal accumulation of cytosolic DNA that activates cGAS and can lead to serious neurological problems.

“This class of drug could potentially also be used to treat more common diseases, such as systemic lupus erythematosus, and possibly neurodegenerative diseases that include inflammatory contributions, such as Parkinson’s disease,” adds Thomas Tuschl, Ph.D.

Findings of the study, as reported in Nature Communications, sheds light on the causes of autoimmunity.

“Scientists will now have simple means by which to inhibit cGAS in human cells,” concluded Lama. “And that could be immensely useful for studying and understanding the mechanisms that lead to autoimmune responses.”

Source: Drug Target Review

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 20, 2020
Genetics & Genomics
APR 20, 2020
Advances in Gene Therapy for Neurons
New research may aid in the development of gene therapies for diseases like Alzheimer's and Parkinson's.
APR 21, 2020
Drug Discovery & Development
APR 21, 2020
Researchers Develop COVID-19 Nasal Spray Vaccine
Researchers from the University of Waterloo in Canada are working on a DNA-based vaccine for COVID-19 that can be applie ...
APR 27, 2020
Drug Discovery & Development
APR 27, 2020
Making Cardiac Medicine From Foxglove Plants
Foxglove plants are known to be shaped like bells and have long decorated many gardens. They belong to a genus of plants ...
MAY 12, 2020
Immunology
MAY 12, 2020
Disabling Genes in Immune Cells Prevents Obesity
Obesity is a $1.7 trillion problem in the United States — a value almost 10% of the nation’s gross domestic ...
MAY 12, 2020
Drug Discovery & Development
MAY 12, 2020
Novel Drug Approved for Non-Small Cell Lung Cancer
The US Food and Drug Administration (FDA) recently approved a therapeutic for treating metastatic non-small cell lung ca ...
JUN 04, 2020
Cannabis Sciences
JUN 04, 2020
Which is Better for Pain Relief: CBD or THC?
Cannabidiol (CBD) and tetrahydrocannabinol (THC) are the two most famous compounds in cannabis. While CBD is known for i ...
Loading Comments...