JUN 18, 2019 10:21 AM PDT

Drug Compound May Treat Common Genetic Kidney Disease

WRITTEN BY: Nouran Amin

Researchers from the University of Sheffield in collaboration with Glasgow-based biotech company Mironid, have developed a new class of drugs for treating a common genetic kidney disease, autosomal dominant polycystic kidney disease (ADPKD),that results in kidney failure.

ADPKD is a result of a genetic fault that alters the normal development of kidney cells causing cyst formation leaving the affected individuals in dire need of life-saving treatments, such as dialysis or a kidney transplant. The cysts in ADPKD cells express higher than normal levels of cyclic AMP (or cAMP)—which can tells when to divide and secrete fluid.

Learn more about ADPKD:

With the newly developed compound, it can activate an enzyme called PDE4, which functions to break down cAMP. The breakdown of cAMP can suppress the progression of ADPKD. Demonstrating the effects of PDE4 on cell lines and patient tissues, researchers were able to confirm that when the Mironid compound activated PDE4, the growth of the cysts were suppressed.

"Drug development usually focuses on looking for ways to block molecular and chemical processes, not switch them on, so this is a rare mode of action. As a researcher, it's very exciting to be involved in the early stage development of a completely new class of drugs,” says Professor Albert Ong, a consultant nephrologist and professor of renal medicine. "It's also very heartening for me as a clinician since like most genetic diseases, ADPKD cannot be cured. This discovery gives me hope for the many patients I see in my clinics that there could be another effective new treatment in the future to keep the disease in check for much longer, either on its own or in combination with other drugs such as tolvaptan. I would love to think that ADPKD could one day be a disease that people can successfully manage throughout their natural lives, rather than one that could shorten their lives."

Findings were published in the journal Proceedings of the National Academy of Sciences (PNAS).

"This exciting publication highlights the innovative science behind our LoAc® PDE4 activator technology. These first-in-class small molecules have the potential to address unmet clinical need in Autosomal Dominant Polycystic Kidney Disease (ADPKD), and potentially have further utility across different therapeutic areas where unbalanced cellular signaling drives disease progression. Looking to the future, we are excited and enthusiastic in our continued collaboration to translate this novel approach into real therapeutic benefit,” says Dr. David Henderson, Mironid’s senior investigator.

Source: University of Sheffield

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
OCT 03, 2020
Cannabis Sciences
Cannabis Compound Prevents Colon Cancer in Mice
OCT 03, 2020
Cannabis Compound Prevents Colon Cancer in Mice
Second only to skin cancer, colon cancer is the most common cancer diagnosed in both men and women in the US. Now, resea ...
OCT 15, 2020
Neuroscience
Neurometabolism: A bold, new frontier
OCT 15, 2020
Neurometabolism: A bold, new frontier
Billions of neurons communicate with each other through trillions of synapses to create a functioning, unique system we ...
OCT 21, 2020
Drug Discovery & Development
New ALS Treatment Extends Life for Several Months
OCT 21, 2020
New ALS Treatment Extends Life for Several Months
Currently, there are only two approved medications to treat Lou Gehrig's disease (also known as ALS), a condition po ...
OCT 27, 2020
Cardiology
Boron Could Prevent Myocardial Fibrosis and Assist in Recovery
OCT 27, 2020
Boron Could Prevent Myocardial Fibrosis and Assist in Recovery
When you pass by the nutrition section at the local grocery store, there is a chance you’ll come across row upon r ...
OCT 11, 2020
Drug Discovery & Development
Treating Connective Tissue Disorders
OCT 11, 2020
Treating Connective Tissue Disorders
Collaborative research efforts are geared to improving disease that affects connective tissues via innovative drug deliv ...
NOV 06, 2020
Drug Discovery & Development
New Vaccine Shows Promise for Herpes
NOV 06, 2020
New Vaccine Shows Promise for Herpes
The World Health Organization estimates that over 500 million people have Herpes Simplex Virus Type 2 (HSV-2), a sexuall ...
Loading Comments...