JUN 18, 2019 11:00 AM PDT

Structures of Outbreak Strains of Human Norovirus

WRITTEN BY: Dena Aruta

Norovirus infections also called the "stomach flu," are foodborne viral illnesses that are spread from person-to-person via direct contact or by consuming contaminated food or water and contact with surfaces contaminated with feces. It is highly infectious and requires as few as 18 viral particles to cause infection. They are the leading cause of foodborne illness in the U.S. and represent over 96% of all non-bacterial outbreaks worldwide. The U.S. usually sees about 21 million cases annually, which accounts for over $2 million in medical care and lost wages. Although noroviruses are responsible for widespread outbreaks, there are currently no vaccines available and no effective treatments other than supportive care. The video below provides a basic understanding of norovirus infections. 

Clinical trials are currently analyzing shells of noroviruses that are absent of genetic material as vaccine candidates. These shells were previously thought to be the same size; however, James Jung and colleagues at Cold Spring Harbor Laboratory used high-resolution (2.6- to 4.1-Å) cryoelectron microscopy (cryo-EM) to examine the sizes and surfaces of four different outbreak strains.  Since vaccines are developed based on the antibodies produced in the body after encountering the capsid (protein shell) of a virus, the shape, size, and surface structures are essential for vaccine development of each strain. 

"We need to understand what the norovirus capsid shapes actually look like, and the shape differences between different strains," said James Jung, a postdoctoral fellow in Dr. Leemor Joshua-Tor's lab at Cold Spring Harbor Laboratory (CSHL). 

Noroviruses are round, non-enveloped, ssRNA viruses and are members of the Caliciviridae family. There are at least six genogroups that are further subdivided into 30 genotypes; genogroups I, II, and IV are capable of infecting humans. Jung and his team analyzed four strains, GII.2 SMV (2.7 and 3.1 Å), GII.4 Minerva (4.1 Å), GI.7 Houston (2.9 Å), and GI.1 Norwalk (2.6 Å), using cryoelectron microscopy to gain a better understanding of the architecture of the capsid and the relationship between variations and disease development.  

"Previously, it was thought that the norovirus shells exist in single-sized assemblies consisting of 180 building blocks and 90 surface spikes. What we found was an unexpected mixture of different shell sizes and shapes. We found a smaller form, which consists of just 60 building blocks with 30 surface spikes placed further apart. We also found larger shells made out of 240 building blocks with 120 surface spikes that are lifted significantly above the base of the shell and form a two-layered architecture that could interact differently with the human cells," Jung said.

"That means each strain will interact differently with human cells," Jung explained. "The way the antibodies bind is also going to be different. Vaccines should be formulated to take into account the variations across strains and structural forms." 

Their high-resolution images with near-atomic detail, which showed variation in the sizes and shapes of the capsids as well as the surface spikes, will be invaluable as templates for future vaccine and antiviral drug development. 

About the Author
  • After earning my Bachelor of Science degree in biology/chemistry from Virginia Polytechnic Institute and State University (aka Va. Tech), I went on to complete clinical rotations in laboratory medicine at Roanoke Memorial Hospital. I spent the next 21 years working in healthcare as a clinical microbiologist. In 2015, I combined my fascination with medicine and passion for writing into a freelance career, and I haven't looked back. Even though my expertise is in microbiology and infectious diseases, I'm adept at writing about any medical topic. Being a freelance writer allows me to pursue a career where I can work at home with my two feline assistants, Luke and Grace. I'm a firm supporter of animal rights and volunteer for a local rescue during my free time. 
You May Also Like
DEC 27, 2020
Genetics & Genomics
Delivering DNA- & RNA-Based Therapies in a New Way
DEC 27, 2020
Delivering DNA- & RNA-Based Therapies in a New Way
Gene therapy holds tremendous promise for its potential to cure genetic diseases. We've also recently seen how critical ...
DEC 31, 2020
Immunology
Arthritis Medication Resolves Previously Untreatable Skin Condition
DEC 31, 2020
Arthritis Medication Resolves Previously Untreatable Skin Condition
Bumpy, inflamed, ring-shaped lesions on the skin—granuloma annulare (GA) is a chronic, inflammatory skin condition ...
JAN 01, 2021
Genetics & Genomics
Common Brain Disorder Has a Genetic Influence
JAN 01, 2021
Common Brain Disorder Has a Genetic Influence
It's thought that as many as one in one hundred people are born with a brain disorder known as Chiari 1 malformation, bu ...
JAN 20, 2021
Immunology
Gut Bacteria's Poison Arrows Exposed
JAN 20, 2021
Gut Bacteria's Poison Arrows Exposed
Bacteria armed with toxin bombs and excruciating abdominal pains caused by raging inflammation in the gut. While the cau ...
JAN 26, 2021
Clinical & Molecular DX
Prostate Cancer Screening: No More False Positives
JAN 26, 2021
Prostate Cancer Screening: No More False Positives
A new diagnostic test powered by artificial intelligence has been found to detect prostate cancer markers in urine sampl ...
JAN 25, 2021
Cancer
Combining Radiotherapy and Immunotherapy in Liver Cancer
JAN 25, 2021
Combining Radiotherapy and Immunotherapy in Liver Cancer
The dream of a magic bullet drug plagues the mind of scientists, doctors, and patients. The truth is some diseases are j ...
Loading Comments...