MAR 11, 2018 09:39 PM PDT

New Drug for Multiple Sclerosis? Potential Therapeutic Treatment Uncovered

WRITTEN BY: Nouran Amin

Multiple sclerosis (MS) is a neurological disease that is unpredictable and often disabling in affected individuals. It is more specifically a disease of the central nervous system (CNS) that afflicts the transport of information in the brain, and how this information is being transmitted to the rest of the body.

 

Unfortunately, there is currently no cure for MS; however, recent research at Mainz University Medical Center in collaboration with the University of Montreal has proposed a new treatment. The researchers experimented in model mice using endothelial cells and discovered that a protein known as EGFL7 hinders the transportation of immune cells into the CNS by maintaining the blood-brain barrier.

The research team leaders are Dr. Timo Uphaus and Professor Frauke Zipp of the Department of Neurology at the University Medical Center of Johannes Gutenberg University Mainz in collaboration with Dr. Catherine Larochelle of the University of Montreal and Professor Mirko Schmidt as well as researchers of the German Cancer Consortium (DKTK). The purpose of the research study is to develop a drug treatment that will stop the pathology of MS from progressing. The focus was the molecule EGFL7 and its role in cell migration MS.

EGFL7 is released into the blood-brain barrier by endothelial cells. In breast cancer, EGFL7 was examined not to have an influence on cellular migration to tumor tissue. For MS, the significance of immune cells is its migration to the brain; this motivated researchers to investigate the relationship between cell migration and the protein EGFL7, and later to propose a treatment for MS.

Investigators discovered that inflammation in the central nervous system was due to increased levels of EGFL7. Since immune cells bind to EGFL7, the protein cannot cross into the central nervous system. When EGFL7 is released, the immune cells are retained in the perivascular space. In model trials, the investigators found that exposure to the protein made the blood-brain barrier less permeable. Additionally, the transportation of immune cells into the central nervous system was reduced.

These discoveries opposed the pathological characteristics of MS and improved the clinical symptoms. The findings concluded that in a human blood-brain barrier model, the migration of immune cells was greatly reduced in isolated endothelial cells. Researchers believe that it may be possible to use EGFL7’s inhibiting properties on migrating immune cells as well as the proteins ability to enhance the impenetrability of the blood-brain barrier. Overall, the results illustrate how EGFL7 can limit CNS immune cell invasion encouraging a potential drug development that involves EGFL7 agonist in the treatment of MS.

The research study was published in Nature Communications.

Sources: Nature Communications, Drug Target Review, National MS Society

 

 

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
New Gene Editing Technology to Combat Hereditary Diseases
Until recently, many types of gene-editing methods were unable to target critical parts of DNA. Now however, researchers at the Salk Institute have develop...
NOV 13, 2019
Drug Discovery & Development
NOV 13, 2019
Drug Reduces Heart Attacks in Diabetic Patients
Recent results from a clinical trial that evaluated the addition of a drug called ‘ticagrelor’ to aspirin were shown to improve clinical outcom...
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
DNA Construction Kit Could Drive Down Costs of Immune Therapy
Researchers at KU Leuven in Belgium have created a DNA construction kit that, when injected into muscle cells, enables sheep to produce new antibodies to f...
NOV 13, 2019
Cardiology
NOV 13, 2019
Heart Attacks Without The Risk
Following a heart attack, as the heart heals, scar tissue forms. This issue is less flexible than healthy heart tissue and may encumber the heart's abi...
NOV 13, 2019
Drug Discovery & Development
NOV 13, 2019
Advancing Nanocontainers for Drug Delivery
Nanocontainers work by delivering drugs to a localized region in the body, many chemotherapeutics work in that matter. The high specificity of this drug de...
NOV 13, 2019
Drug Discovery & Development
NOV 13, 2019
Investigating a common therapeutic in ADHD treatment
Attention-Deficit Hyperactivity Disorder (ADHD) is a widespread condition with variable underlying causes. A common therapeutic, called methylphenidate, se...
Loading Comments...