OCT 18, 2018 06:37 AM PDT

Potential Drug Target for Tactile Allodynia

WRITTEN BY: Nouran Amin

According to research published in the journal Science Translational Medicine in collaboration with a study led by the National Institutes of Health, a new protein found in neuronal cells was identified by researchers at Scripps Research to be implicated in tactile allodynia; a painful sensation caused by light touch and often associated with neuropathy.

Watch Video Below To Learn More about Tactile Allodynia:

The protein identified is PIEZO2 which was originally discovered in the laboratory of Professor Ardem Patapoutian, who worked significantly on the role of allodynia in mice. These studies also confirmed that PIEZO2 was responsible for allodynia in humans. “These two studies provide validation that targeting PIEZO2 could be beneficial in the clinic,” explains Prof. Patapoutian.

During the studies, researchers had used various induction methods for allodynia including the utilization of a neuronal sensitive chemical molecule, capsacin, which is found in a chili pepper, and known to cause inflammation. “We hope that these results will help researchers develop better treatments for managing this common form of pain,” said study author Alexander T. Chesler, PhD, who is also a Stadtman Investigator at the NIH’s National Center for Complementary and Integrative Health (NCCIH).

Image via Drug Target Review

Furthermore, first author of the study—Dr. Swetha Murthy had examined the research to focus on mice who had gentle reactions to touch after exposure to capsaicin. Findings concluded that non-genetically altered normal mice had experienced allodynia. However, the mice that were altered, or had the PIEZO2 gene “knocked out”, did not experience allodynia by not reacting to the capsaicin exposure. Additionally, the findings were also exhibited in human patients who had mutations in their PIEZO2 gene expression. “It was very gratifying to see this in both studies,” says Dr. Murthy. “It usually takes years to confirm if results observed in mice hold true in humans, so I think it was mutually exciting for both groups.”

The researchers are looking forward to examine exactly how inflammation is implicated with normal touch signals and to determine a cause. They also wish to identify potential molecules that can act as PIEZO2 blockers that may one day relieve patients from neuropathic pain.

Source: Science Transitional Method, Drug Target Review

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
JUL 24, 2018
Drug Discovery
JUL 24, 2018
Reversing Symptoms of Aging in Mice Inspires Anti-Aging Drugs
It would be a breakthrough for science if symptoms of aging were reversed in humans. Well, researchers at the University of Alabama at Birmingham have turn...
JUL 30, 2018
Genetics & Genomics
JUL 30, 2018
Therapeutic Created for a Rare Genetic Disease
There is new hope for people that suffer from a rare genetic disease called Hereditary angioedema (HAE)....
AUG 19, 2018
Cardiology
AUG 19, 2018
Three in One Pill Lowers Blood Pressure
New pill that combines three high blood pressure medication into one pill is both more effective and safe....
AUG 21, 2018
Drug Discovery
AUG 21, 2018
New Drug Delivery System for Precision Medicine
A flexible drug delivery device providing controlled released offers the latest in personalized medicine. The device was developed by The Korea Advanced In...
SEP 08, 2018
Drug Discovery
SEP 08, 2018
Protein Associated With ALS Inspires Drug Treatments
Neurodegenerative diseases, such as degenerative ataxia or amyotrophic lateral sclerosis (ALS), will progressively cause an affected individual to develop ...
SEP 15, 2018
Videos
SEP 15, 2018
A Hangover Cure in a Pill
A night of drinking can lead to a morning of regret for many people, but science is working on a solution for the physical pain....
Loading Comments...