AUG 13, 2018 10:30 AM PDT

A Kind of Forensics to ID the Source of Bacterial Outbreaks

WRITTEN BY: Carmen Leitch

Scientists at Mayo Clinic have developed a way to use whole genome sequencing to locate the source of deadly bacterial pathogens. Some strains of Staphylococcus aureus have become resistant to antibiotics, and this common microbe has become a killer. Now, forensic-style science can help stop the spread of this bug.

Scanning electromicrograph of Staphylococcus aureus bacteria. Credit: NIAID

“If we have two or more people infected with the same type of bacterium, the question sometimes arises as to whether they got the organisms from one another or a shared source. The answer to this question can shape an approach to limit further spread,” explained Robin Patel, M.D., a clinical microbiologist with Mayo Clinic Department of Laboratory Medicine and Pathology. “Or, a patient might have a bacterial infection and later a second infection with the same type of bacterium. Whole genome sequencing can determine whether the patient picked up a new ‘version’ of the bacterium or if the old one never went away. This can matter for management of that patient.”

S. aureus, also known as staph bacteria, are a common cause of infections on the skin and in underlying tissue, like boils and abscesses. These infections usually aren’t serious. However, the bacterium can also cause a life-threatening infection that can get into bones, joints and the bloodstream.

Finding out where the infection is coming from can be difficult without using whole genome sequencing on the pathogen. 

“It is important to develop tests that can distinguish how individual bacteria are related to one another and to understand and control the spread of bacterial infections,” noted Nicholas Chia, Ph.D., assistant director of the Center for Individualized Medicine Microbiome Program.

The researchers at Mayo are trying to bring the bench closer to the bedside; they want to use testing methods that encompass the whole bacterial genome when assessing pathogens.

“With microbial whole-genome sequencing, we can discover all there is to possibly know about an organism. It is cutting-edge technology that’s a little like CSI (crime scene investigation) in a way. We are providing information to assess relatedness, which will, in turn, direct interventions to interrupt transmission,” explained Dr. Patel.

It’s been established that sequencing the whole genome can help in identifying the source of dangerous pathogens, like methicillin-resistant Staphylococcus aureus, or MRSA. Outbreaks of that superbug have occurred in sports teams at all playing levels as well as healthcare facilities. Limiting the number of infected individuals can depend on finding its source.

Related: Cleansers, Antibiotics may Contribute to the Growth of MRSA in the Home

“Examining the entire bacterial genome, we will, in the near future, be able to identify resistance genes and mutations, therefore defining which antibiotics are going to be active. Our early research indicates that we can use whole genome sequencing to inform drug selection and therefore how that patient should be treated. It is so new, we’ve elected to look at this application separately from the strain relatedness testing approach we are currently performing,” noted Dr. Patel.

Not many US medical centers use whole-genome sequencing to characterize Staph bacteria when it’s found in the clinic like Mayo does. Researchers are hopeful that this testing will expand, and they’ve made the tests available.

Learn more about typical approaches to dealing with bacterial outbreaks.


Source: Mayo Clinic

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 25, 2018
Microbiology
NOV 25, 2018
Researchers Learn How Hantavirus Infects Cells
First identified in 1993, hantavirus infections can cause dangerous and potentially deadly respiratory infections....
NOV 27, 2018
Immunology
NOV 27, 2018
A Mutated Immunity
Researchers utilize blood samples to determine cancer neoantigens to create effective vaccination in mouse model...
DEC 13, 2018
Genetics & Genomics
DEC 13, 2018
Insights Into the Mechanisms Underlying Anxiety
Up to 40 million Americans have an anxiety disorder in any given year, and it's thought that only about a third get treatment....
DEC 20, 2018
Videos
DEC 20, 2018
A Genetic Test for Sociability in Dogs
It may be possible to swab a dog's cheek and do a genetic test to see if it would make a good service dog....
DEC 22, 2018
Technology
DEC 22, 2018
A Dynamic DNA Origami Technique
It was not a while back ago when researchers developed a unique technique known as ‘DNA origami’ to produce tiles that could be self-assembled ...
JAN 03, 2019
Immunology
JAN 03, 2019
Can the Immune System Restore Youth?
Researchers have identified a target gene that allows for premature aging and inflammation. Target drug therapy allows to the effects of aging to reverse in mice....
Loading Comments...