AUG 07, 2015 1:45 PM PDT

Isolating Autism

WRITTEN BY: Ilene Schneider
Researchers have discovered as many as 1,000 genetic mutations along the autism spectrum. One enzyme that could be responsible for one of them has been isolated by researchers and may have value in treating autism, according to an article published in the journal, Cell, and reported by Seth Augenstein in Drug Discovery & Development (http://www.dddmag.com/news/2015/08/autism-mutation-isolated-could-be-treated-specific-enzyme?et_cid=4723419&et_rid=45505806&type=cta).
Isolating autism mutation could lead to effective treatment.
As described by the Centers for Disease Control (CDC), autism spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral challenges. The estimated number of children identified with autism spectrum disorder (ASD) continues to rise and is most recently estimated at 1 in 68 children. CDC also says that it costs about $17,000 more per year to care for a child with ASD, as compared to a child without ASD. Costs include health care, education, ASD-related therapy, family-coordinated services and caregiver time. Societal costs of caring for children with ASD were over $9 billion in 2011 (http://www.cdc.gov/ncbddd/autism/facts.html).

According to Mark Zylka, an associate professor of cell biology and physiology at the University of North Carolina School of Medicine, "Genetic studies are showing that there will be about 1,000 genes linked to autism. This means you could mutate any one of them and get the disorder. We found how one of these mutations works."

While the enzyme UBE3A is tightly regulated in neurons during the development in normal brains, a mutation destroys the regulatory switch. That, in turn, causes autism when the enzyme becomes hyperactive, the UNC scientists explained. The team showed how the UBE3A mutation works in human cells taken from a child with autism. The researchers described the dendritic spines forming on the neurons of those cells as "a telltale sign of autism."

The mutation is on the 15q chromosome, encompassing the UBE3A and related genes. It is, according to the researchers, one of the most-commonly seen alterations in autistic DNA. The mutation is called Dup15q.

The researchers also tested treatment of the mutation in the human cells with Rolipram, "a drug that was developed to treat depression but was discontinued because of side effects in clinical trials." The drug was found to boost protein kinase A (PKA), which regulated the UBE3A, they found.

According to Zylka, "We think it may be possible to tamp down UBE3A in Dup15q patients to restore normal levels of enzyme activity in the brain. In fact, we tested known compounds and showed that two of them substantially reduced UBE3A activity in neurons. The benefits might outweigh the risks."

This could be the start of investigations into the complexities and potential treatments of the autism spectrum. A Columbia University study published in December in Nature Neuroscience estimated the number of mutations that make up the full known spectrum. For 10 years, the Autism Genome Project has been catalogued the varieties of these mutations. In May, a team of researchers at the University at Buffalo found another genetic mutation called Shank3, which could possibly be reversed.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Epigenetic Changes Make Breast Cancer Cells Drug Resistant
Researchers have found that changes in the structure of the genome in breast cancer cells can make them resistant to drug therapies....
JAN 26, 2020
Genetics & Genomics
JAN 26, 2020
Free-Floating Mitochondria Found in Blood
Mitochondria are one of the specialized structures or organelles that can be found in eukaryotic cells, as well as some places outside of the cell....
JAN 27, 2020
Genetics & Genomics
JAN 27, 2020
Finding Cancer-Promoting Genes Using Machine Learning
Machine learning algorithms are increasingly being applied to the vast amount of genetic data that has been generated over the past decade....
FEB 12, 2020
Microbiology
FEB 12, 2020
Using Genomics to Learn More About a Mumps Outbreak
Though vaccination rates are high, small mumps outbreaks sometimes still occur....
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
MAR 22, 2020
Cancer
MAR 22, 2020
What is "Shotgun ion mobility mass spectrometry sequencing"?
Research published recently in Nature Communications highlights a new method of mapping an essential family of polysaccharides called GAGs (glycosaminoglyc...
Loading Comments...