MAR 08, 2020 5:10 AM PDT

Zigzagging DNA

WRITTEN BY: Carmen Leitch

Cells have to store the entire genome in an organelle called the nucleus, and this lengthy DNA molecule has to be carefully packaged by proteins to fit properly inside. While it may just look like a clumpy mass, intricate processes ensure that it is replicated exactly and then divided evenly during cell division so that the resulting daughter cells each get a complete copy of the genome. Scientists know that a protein called condensin plays a critical role in this process, and now scientists have learned more about its function.

In February 2018, a team of scientists showed how the condensin protein can force a loop out, or extrude a loop of DNA. Follow up work by this team has shown that condensin can also help form a totally different loop structure called the Z-loop. Reporting in Nature, they have demonstrated that condensins interact to fold up DNA into a structure with a zigzag shape.

"It started with the question of whether DNA can be folded into a compact chromosome by means of single loops, or whether there is more to it," said TU Delft postdoctoral fellow Dr. Eugene Kim. "We wanted to see several condensins at the same time. During the experiments, we discovered an interesting new form of folded DNA, which clearly differs from a single loop, and which surprisingly also occurs much more often than those loops. We were able to figure out experimentally that DNA is folded in a kind of zigzag structure. We named these structures Z-loops since the DNA is folded in the form of the letter Z."

"It wasn't predicted at all," added Kim.

"The creation of a Z-shaped structure begins when one condensin lands on DNA and makes a single loop. Then, a second condensin binds within that loop and starts to make its own loop, creating a loop in a loop. When the two condensins meet during their tug-of-war, something surprising happens: the second condensin hops over the first one and grabs the DNA outside the loop, continuing its way along the DNA," explained research leader Professor Cees Dekker. "We were very surprised that condensin complexes can pass each other. This is completely at odds with current models, which assume that condensins block each other when they meet."

Packaged in cells, DNA can be challenging to study, and the loop extrusion process is difficult to observe. In this work, the researchers attached the ends of a single molecule of DNA to a glass surface, then used fluorescent tags to label the condensin proteins and DNA. The application of liquid made the DNA take on a U-shape, and the scientists visualized it in a microscope.

Dysfunction in the condensin proteins have been connected to disease, and this work may help us learn more about those disorders as well as the basic mechanisms underlying DNA packaging and organization.

Sources: AAAS/Eurekalert! via Delft University of Technology, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 27, 2021
Cell & Molecular Biology
Organoids Reveal Common Mechanism Underlying Rare Disorders
JUN 27, 2021
Organoids Reveal Common Mechanism Underlying Rare Disorders
Genetic testing has shown that mutations in a gene called HUWE1 are connected to rare syndromes that cause developmental ...
JUL 01, 2021
Microbiology
Plague Bacteria Found In the Remains of a 5,000 Year Old Man
JUL 01, 2021
Plague Bacteria Found In the Remains of a 5,000 Year Old Man
This image by Dominik Göldner, BGAEU, shows the skull of a hunter gatherer that was recovered from a site in present-day ...
JUL 23, 2021
Neuroscience
Researchers Switch Fear Response 'On' and 'Off' in Mice
JUL 23, 2021
Researchers Switch Fear Response 'On' and 'Off' in Mice
The fear response can be switched 'on' and 'off' in mice by targeting certain cells in the brain with pu ...
AUG 04, 2021
Cell & Molecular Biology
Consuming Too Much Sugar Could Disrupt the Cell's Powerhouses
AUG 04, 2021
Consuming Too Much Sugar Could Disrupt the Cell's Powerhouses
Both processed and prepared foods often contain high levels of sugar. It's thought that the average American eats almost ...
SEP 06, 2021
Cell & Molecular Biology
Researchers Miniaturize the CRISPR Gene Editing Tool
SEP 06, 2021
Researchers Miniaturize the CRISPR Gene Editing Tool
The CRISPR gene editor uses RNA molecules that act as guides that ta Cas9 proteins, which are like enzymatic scissors, t ...
SEP 13, 2021
Genetics & Genomics
Moderna is Developing mRNA Vaccines to Rescue Different Protein Defects
SEP 13, 2021
Moderna is Developing mRNA Vaccines to Rescue Different Protein Defects
A genome contains instructions for making genes, and when an organism needs to produce proteins, it transcribes a gene s ...
Loading Comments...