MAR 11, 2016 8:37 AM PST

Improved CRISPR System Reads Induced Pluripotent Stem Cell Genome For the First Time

WRITTEN BY: Kara Marker
With an enhanced form of the CRISPR-Cas9 system, scientists were able to read the genome of induced pluripotent stem cells (iPSCs) for the first time. The new system provides a more temporary gene modification that will be extremely useful for scientists using this method to conduct therapeutic gene editing techniques.
 
The new study builds off of a 2013 method developed by Stanly Qi, PhD, who is also a co-author on the current paper. Qi designed CRISPR interference (CRISPRi), a system with the ability to “inactivate genes in IPSCs and heart cells created from iPSCs.” CRISPRi improves the original system because genes can be silenced or turned off “more precisely and efficiently.” Plus, CRISPRi offers additional beneficial characteristics like deletion flexibility and reversible gene suppression.
 
Instead of the traditional Cas9 protein used by the original system, CRISPRi uses a deactivated version of Cas9 in addition to an inhibitor protein called KRAB. These proteins work together to suppress parts of the target genome without actually cutting the DNA like Cas9 does. Apparently this more temporary method of suppressing gene expression produces more consistent reads than when Cas9 makes permanent cuts in the DNA.
 
Various Applications of the CRISPR-Cas9 technology.


In the new Gladstone Institutes study published in Cell Stem Cell, scientists completed a comparison of traditional CRISPR-Cas9 and CRISPRi in their ability to silence an iPSC gene that controls pluripotency. While CRISPR-Cas9 was successful in silencing the target gene 60-70 percent of the time, CRISPRi appeared even more prominent, with a success rate of 95 percent.
 
"We were amazed by the dramatic difference in performance between the two systems," said senior author Bruce Conklin, MD. “In fact, CRISPRi is so precise and binds so tightly to the genome that it is actually a better way to silence a gene.”
 
In addition to being a reversible way to silence a gene, CRISPRi allowed the scientists to modify just how much a gene was silenced by adding different amounts of chemicals. This characteristic is especially important in clinical situations, since not all gene mutations completely suppress a gene’s expression.
 
"Using this technology, we can mimic disease in a homogenous population of heart cells created from iPSCs,” said first author of the study Mohammad Mandegar, DPhil. “This development allows us to study genetic diseases more easily and potentially identify new therapeutic targets."
 
 
Source: Gladstone Institutes
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 01, 2020
Immunology
Cell Atlas of Mosquito Immunology Reveals New Avenues for Eradicating Malaria
SEP 01, 2020
Cell Atlas of Mosquito Immunology Reveals New Avenues for Eradicating Malaria
Malaria is one of the biggest ongoing threats to global health — over 200 million were infected and almost half a ...
SEP 14, 2020
Cancer
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
SEP 14, 2020
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
It is often unknown whether a patient will respond to a treatment until it is in full swing. New research is attempting ...
SEP 23, 2020
Immunology
Gene That Fuels Antibody Factories Discovered
SEP 23, 2020
Gene That Fuels Antibody Factories Discovered
Antibodies are Y-shaped proteins that play a central role in the immune system’s arsenal of germ-busting weapons. ...
SEP 21, 2020
Genetics & Genomics
Replicating the Genome With a Twist
SEP 21, 2020
Replicating the Genome With a Twist
Cold Spring Harbor Laboratory scientists have used cryo-EM to learn more about how the human genome is replicated.
NOV 12, 2020
Genetics & Genomics
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
NOV 12, 2020
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
To repair disease-causing errors in the genome, gene editing reagents like those used in CRISPR-Cas9 first have to reach ...
NOV 29, 2020
Genetics & Genomics
Gene Therapy for Eye Disorder May Have Other Applications
NOV 29, 2020
Gene Therapy for Eye Disorder May Have Other Applications
In recent years, scientists have been able to develop gene therapies to treat some eye diseases. The eyes are uniquely q ...
Loading Comments...