MAR 11, 2016 8:37 AM PST

Improved CRISPR System Reads Induced Pluripotent Stem Cell Genome For the First Time

WRITTEN BY: Kara Marker
With an enhanced form of the CRISPR-Cas9 system, scientists were able to read the genome of induced pluripotent stem cells (iPSCs) for the first time. The new system provides a more temporary gene modification that will be extremely useful for scientists using this method to conduct therapeutic gene editing techniques.
 
The new study builds off of a 2013 method developed by Stanly Qi, PhD, who is also a co-author on the current paper. Qi designed CRISPR interference (CRISPRi), a system with the ability to “inactivate genes in IPSCs and heart cells created from iPSCs.” CRISPRi improves the original system because genes can be silenced or turned off “more precisely and efficiently.” Plus, CRISPRi offers additional beneficial characteristics like deletion flexibility and reversible gene suppression.
 
Instead of the traditional Cas9 protein used by the original system, CRISPRi uses a deactivated version of Cas9 in addition to an inhibitor protein called KRAB. These proteins work together to suppress parts of the target genome without actually cutting the DNA like Cas9 does. Apparently this more temporary method of suppressing gene expression produces more consistent reads than when Cas9 makes permanent cuts in the DNA.
 
Various Applications of the CRISPR-Cas9 technology.


In the new Gladstone Institutes study published in Cell Stem Cell, scientists completed a comparison of traditional CRISPR-Cas9 and CRISPRi in their ability to silence an iPSC gene that controls pluripotency. While CRISPR-Cas9 was successful in silencing the target gene 60-70 percent of the time, CRISPRi appeared even more prominent, with a success rate of 95 percent.
 
"We were amazed by the dramatic difference in performance between the two systems," said senior author Bruce Conklin, MD. “In fact, CRISPRi is so precise and binds so tightly to the genome that it is actually a better way to silence a gene.”
 
In addition to being a reversible way to silence a gene, CRISPRi allowed the scientists to modify just how much a gene was silenced by adding different amounts of chemicals. This characteristic is especially important in clinical situations, since not all gene mutations completely suppress a gene’s expression.
 
"Using this technology, we can mimic disease in a homogenous population of heart cells created from iPSCs,” said first author of the study Mohammad Mandegar, DPhil. “This development allows us to study genetic diseases more easily and potentially identify new therapeutic targets."
 
 
Source: Gladstone Institutes
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 19, 2021
Genetics & Genomics
The Genetic Secrets of Long-Lived People
MAY 19, 2021
The Genetic Secrets of Long-Lived People
For 2019, the United Nations estimated that the average life expectancy for a person is 72.6 years of age. People that l ...
JUN 13, 2021
Cell & Molecular Biology
The DNA Content of a Cell Helps Control Its Size
JUN 13, 2021
The DNA Content of a Cell Helps Control Its Size
Cells have to maintain the right size; bacterial and eukaryotic cells tend to have a characteristic size, but that may a ...
JUN 30, 2021
Genetics & Genomics
A New Kind of Regulatory Element in the Genome
JUN 30, 2021
A New Kind of Regulatory Element in the Genome
The common, two-stranded helical structure of DNA was discovered over one hundred years ago. Many researchers would go o ...
JUL 02, 2021
Genetics & Genomics
Fish Models Provide New Insight Into Rare Genetic Diseases
JUL 02, 2021
Fish Models Provide New Insight Into Rare Genetic Diseases
Fish can serve as good research models. They can develop quickly, outside of the mother where they can be observed. Some ...
JUL 12, 2021
Genetics & Genomics
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
JUL 12, 2021
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
Scientists have been developing gene therapies that can help restore vision that's lost due to a problem with a gene ...
JUL 28, 2021
Microbiology
Histones May Be Essential to Amoeba-Infecting Viruses
JUL 28, 2021
Histones May Be Essential to Amoeba-Infecting Viruses
Histones are proteins that are used to organize and compact DNA. Some giant viruses called Marseilleviridae have also be ...
Loading Comments...