JUL 14, 2016 7:39 AM PDT

DNA Collision Report: Mutagenesis in the Promoter

WRITTEN BY: Kara Marker
Replication, transcription, and translation, the pedestals of genetics, occur in synchrony. The unique machinery of each process travels along strands of DNA, replicating DNA and transcribing the information into messenger RNA to then become proteins. Normally transcription and replication travel in the same direction on the DNA highway, but what happens when instead they are on opposite sides of the road working in opposing directions? 
Credit: Iiser Pune
The collision of transcription and replication in this situation can be quite dangerous, and there is no “like a good neighbor, State Farm is there” jingle to resolve the conflict. Instead, according to a new study from the Baylor College of Medicine and University of Wisconsin scientists, these collisions lead to higher rates of genetic mutations during protein production.

In their recently published Nature paper, the researchers used model organism Bacillus subtilis to look for patterns of mutagenesis in a specific B. subtilis gene. They compared the rate of mutagenesis between two scenarios: DNA replication and transcription traveling in the same direction along a strand of DNA versus traveling in opposite directions, guaranteed to collide. After introducing the B. subtilis gene into each situation, the pattern of mutagenesis was very telling. 

As expected, there was a much higher mutation rate in the B. subtilis genes that were placed in the collision scenario versus the normal, same-direction travel scenario. However, the researchers also found some unexpected results. The mutations from replication and transcription collisions, mostly insertions, deletions, and substitutions, were in the promoter region of the gene rather than in actual protein-coding sequences.

Substitution mutations involve one nucleotide base (A, C, T, G) being exchanged for another. Once switch can make a monumental difference later in the process of protein production. Additionally, as their names suggest, insertions and deletions include either an addition of a nucleotide base or the removal of a base. 

Promoter sequences on strands of DNA mark the beginning of gene transcription, the molecular start line RNA polymerase relies on to begin transcribing DNA into RNA. The promoter is therefore uniquely in charge of the regulation of gene expression, and mutations in this region would lead to increased expression of a gene, decreased expression, or even complete silencing of a gene’s expression – as if it were not there at all.

Most studies usually concentrate on mutations in the protein-coding sequences, making the uncovering of promoter mutations in this study unique and promising for future genetic research. While the present study was conducted only in B. subtilis, scientists are already looking ahead to continuing a similar study design in more bacterial species and in humans. 
 


Sources: Baylor College of Medicine, Scitable by Nature Education, University of California, Berkeley
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 14, 2020
Genetics & Genomics
Why Defects in One Gene Can Lead to Cancer in Kids
SEP 14, 2020
Why Defects in One Gene Can Lead to Cancer in Kids
While they may occur in adults, a rare, aggressive type of brain cancer called atypical teratoid rhabdoid tumors tend to ...
SEP 23, 2020
Immunology
Gene That Fuels Antibody Factories Discovered
SEP 23, 2020
Gene That Fuels Antibody Factories Discovered
Antibodies are Y-shaped proteins that play a central role in the immune system’s arsenal of germ-busting weapons. ...
SEP 21, 2020
Neuroscience
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
SEP 21, 2020
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
Cavefish are fish that dwell in caves, unable to access the outside world. Often, they were separated from their closest ...
SEP 27, 2020
Genetics & Genomics
There's More to the Y Chromosome Than We Knew
SEP 27, 2020
There's More to the Y Chromosome Than We Knew
While humans beings carry mostly the same genes on two copies of 23 chromosomes, the sex chromosomes are a bit different ...
OCT 03, 2020
Genetics & Genomics
Genetic Changes Can Influence Cocaine Addiction
OCT 03, 2020
Genetic Changes Can Influence Cocaine Addiction
There is no treatment for cocaine addiction, which affects millions of people around the world and has a high relapse ra ...
NOV 02, 2020
Genetics & Genomics
Denisovan DNA Recovered From the Tibetan Plateau
NOV 02, 2020
Denisovan DNA Recovered From the Tibetan Plateau
Denisovans were ancient hominins that were discovered only recently, and they had a wider range than previously known.
Loading Comments...