JAN 06, 2018 1:18 PM PST

Gene Fusion can Increase Likelihood of Cancer

WRITTEN BY: Carmen Leitch

Researchers have made a discovery about genes that are adjacent to each other; they can fuse, which boosts the activity of organelles called mitochondria. That can drive cell growth and can cause cancer. The scientists from Columbia University Medical Center (CUMC) also found that when drugs act to interfere with this novel cancer pathway, it can halt tumor growth in a mouse model of brain cancer and human cells in culture. The work was reported in the journal Nature and is outlined in the video.

The CUMC researchers have already shown that when the genes FGFR3 and TACC3 fuse, it can cause one of the most aggressive forms of primary brain cancer. It had been thought that this phenomenon was limited to only a small percentage of brain tumors, impacting around 300 people in the United States annually. Recent studies have told a different tale.

That same gene fusion has been observed in subsets of breast, esophageal, lung, head and neck, cervical and bladder cancers, which translates to thousands of patients. "It's probably the single most common gene fusion in human cancer," noted the co-leader of the work, Antonio Iavarone, MD, professor of neurology and of pathology and cell biology in the Institute for Cancer Genetics at CUMC. "We wanted to determine how FGFR3-TACC3 fusion induces and maintains cancer so that we could identify novel targets for drug therapy."

This work has shown that in cells with fused FGFR3-TACC3 genes, the activity of the cellular powerhouse, the mitochondria, is substantially increased. Scientists have known for some time that cancer is linked to changes in mitochondria and cellular metabolism. Cancer cells need very active mitochondria to drive their rapid growth. This research may reveal how gene mutations are connected to altered mitochondrial activity and tumor development.

Central nervous system cells expressing the FGFR3-TACC3 fusion protein. / Credit: Iavarone Lab, Columbia University Medical Center

The scientists also found that the fusion of FGFR3 and TACC3 activated the PIN4 protein, which then moves to an organelle called the peroxisome. Peroxisome production is increased, and oxidants are released, which act on a molecule that regulates metabolism in the mitochondria. The outcome is an uptick in mitochondrial activity and the production of energy.

"Our study offers the first clues as to how cancer genes activate mitochondrial metabolism, a crucial and longstanding question in cancer research, and provides the first direct evidence that peroxisomes are involved in cancer," explained a co-leader of the report, Anna Lasorella, MD, professor of cell biology in the Institute for Cancer Genetics and of pediatrics at CUMC. "This gives us new insights into how we may be able to disrupt cancer's fuel supply."

When the investigators exposed brain cancer cells with FGFR3-TACC3 fusions to chemicals that inhibit mitochondria activity, energy production went down and tumor growth slowed. A mouse model repcaitualted those results.

This work can help create new therapeutic options. A kinase inhibitor has been found to interfere with the protein produced by the fused genes. There are currently clinical trials evaluating the efficacy of such a drug in patients with gene fusion.

"Drugs that inhibit active kinases have been tried with encouraging results in some cancers," said Dr. Iavarone. "But invariably, they become resistant to the drugs, and the tumors come back. However, it may be possible to prevent resistance and tumor recurrence by targeting both mitochondrial metabolism and FGFR3-TACC3 directly."

Next, the team wants to see whether adding mitochondrial inhibitors to patient therapeutics will help patients. They are now testing this approach in cell culture and animal models.

Sources: AAAS/Eurekalert! Via Columbia University, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 25, 2021
Genetics & Genomics
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
MAY 25, 2021
Mitochondrial Dysfunction May Raise Schizophrenia Risk in 22q Patients
A disorder called 22q11.2 deletion syndrome (22q) affects about one in 2,000 births, and causes dysfunction in every org ...
JUN 10, 2021
Cell & Molecular Biology
Does Lithium Prevent Colon Cancer?
JUN 10, 2021
Does Lithium Prevent Colon Cancer?
Researchers found that a drug used in the treatment of mental illness can promote the fitness of healthy gut stem cells, ...
JUN 23, 2021
Genetics & Genomics
Expansive RNA Atlas Includes Coding & Non-Coding Molecules
JUN 23, 2021
Expansive RNA Atlas Includes Coding & Non-Coding Molecules
We'e sequenced the human genome, even the parts that are highly repetitive, don't code for protein, and are extremely ch ...
JUL 02, 2021
Genetics & Genomics
Fish Models Provide New Insight Into Rare Genetic Diseases
JUL 02, 2021
Fish Models Provide New Insight Into Rare Genetic Diseases
Fish can serve as good research models. They can develop quickly, outside of the mother where they can be observed. Some ...
JUL 05, 2021
Genetics & Genomics
Genetics May Help Us Learn Who is at Risk From a Folate Deficiency
JUL 05, 2021
Genetics May Help Us Learn Who is at Risk From a Folate Deficiency
Folate is necessary for a healthy pregnancy; low folate levels can lead to neural tube defects. A lack of folate, a nutr ...
JUL 25, 2021
Genetics & Genomics
Understanding How Mitochondrial Dysfunction May Cause Parkinson's
JUL 25, 2021
Understanding How Mitochondrial Dysfunction May Cause Parkinson's
Parkinson's disease is a complex neurodegenerative disorder. While age is a major risk factor, genetics and environmenta ...
Loading Comments...