MAY 27, 2018 2:48 PM PDT

Learning More About Epigenetic Tagging

WRITTEN BY: Carmen Leitch

Humans carry a little over 20,000 genes, which have to turn off and on in the right places and at the right times. Some genes might be inactive for long stretches at a time. Other regions of the genome can move around to different areas if they aren’t regulated. Our genome has to be strictly controlled. To do so, cells can mark it with tags that essentially say “do not use.” This kind of tag is an epigenetic marker; one type called DNA methylation is commonly used at a variety of levels in different cells and various times. Now researchers at the Salk Institute have identified a group of proteins that control how methylation tags are added.

This research used plants as a model, but it applies to many general cellular processes, like development. It also offers insight into dysfunction in methylation, which can cause problems for an organism. This work has been reported in Nature Genetics.

“If we want to understand how differences in DNA methylation patterns can cause developmental defects in plants or diseases like cancer in humans, we need to understand how DNA methylation is targeted to specific regions of the genome under normal conditions,” explained the senior author of the work, Salk Assistant Professor Julie Law. “Until now, factors able to control methylation in such a precise manner have been elusive.” Law is featured in the video.

The plant Arabidopsis thaliana, a weed, was the first to have its genome sequenced, and scientists including Law have been studying methylation patterns in the genome ever since. Epigenetic tags don’t permanently change a genome but can dramatically affect how genes are expressed. That has generated intense research interest, and the plant is much easier to use for study because they are far more tolerant of methylation defects than animals are. In animals, those changes can kill.

Law’s lab wanted to know more about the regulation of methylation. A protein complex, RNA polymerase IV or Pol-IV, is known to have a role in DNA methylation patterning. Pol-IV generates siRNAs; in plants, they can initiate methylation. To study how Pol-IV is regulated, the scientists decided to focus on the CLASSY family of four proteins. When the genes for those proteins were disrupted, the siRNA signals were lost, and DNA methylation was reduced - one area for each protein. When all proteins were mutated at once, DNA methylation disappeared from the genome.

Salk Assistant Professor Julie Law and Research Associate Ming Zhou, pictured with their Arabidopsis thaliana plants in a Salk greenhouse. / Credit: Salk Institute

“In the CLASSY quadruple mutants, the Pol-IV signal completely disappears—essentially no siRNAs are made,” said first author Ming Zhou, a Salk research associate. “This is very strong evidence that CLASSYs are required for Pol-IV function.”

Further study indicated that the CLASSY gene mutations caused some genes to turn on when they shouldn’t. Widespread methylation decreases were observed in mobile DNA elements, which increases the likelihood they will move around and cause problems.

“The CLASSYs are a part of a large superfamily that is common to both plants and animals,” added Law, the Hearst Foundation Development Chair. “We hope that by understanding how specific methylation patterns are generated in plants, we can provide insights into how DNA methylation is regulated in other organisms.”

Epigenetic tags have been linked to changes in crop yield, as well as disease; understanding how epigenetic tags are regulated could help solve those problems. The lab also wants to know more about the control of methylation patterns during development, and the impact of the environment.


Sources: AAAS/Eurekalert! Via Salk Institute, Current GenomicsNature Genetics

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 24, 2020
Genetics & Genomics
JAN 24, 2020
As Sperm Mature, They Scan Their DNA and Repair Errors They FInd
Researchers have learned that when sperm cells mature, they activate many of their genes, which enables a repair process to take place....
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
MAR 02, 2020
Genetics & Genomics
MAR 02, 2020
DNA Replication Discovery May Lead to New Cancer Treatments
Researchers have learned more about DNA replication during cell division, and their insights may help create new types of cancer therapeutics...
MAR 15, 2020
Genetics & Genomics
MAR 15, 2020
Insight Into Neuronal Growth and Memory Formation
Now scientists have learned more about the transport of mRNA in neurons, and the storage and formation of memories....
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defects....
Loading Comments...