JAN 09, 2018 7:36 AM PST

Why This One Amish Family Lives Longer and Healthier Than Most

Eat right. Get regular exercise. Don't smoke, don't use drugs and avoid stress. These pieces of advice are the mantras of most health professionals. If the goal is to live a long life, following these recommendations will definitely improve the odds.

Indeed, many of the trappings of "modern" life such as better nutrition, more accurate information on disease and better access to medical care are the reason some of us are living longer. Is it always the environment, however? A recent study at Northwestern University suggests that a rare genetic mutation found in a single family living in the Old Order Amish community near Berne, Indiana could be the cornerstone of developing an anti-aging drug that would increase longevity.

The study revealed that some of the Indiana Amish kindred (immediate family members and relatives) who have the mutation live longer, by about 10%, than those without it. Along with the mutation, this group of Amish also have longer telomeres. Telomeres are structures, which resemble an end cap on strands of DNA. They can be compared to the bits of plastic at the end of shoelaces (Trivia tip, those are called aglets) and when cells divide, which happens as we age, they get shorter and shorter. The genetic mutation that causes longer telomeres has a protective effect against aging because, with more material, cells stay healthier longer.

One of the benefits the study found was that Amish participants who have the mutation, also have a lower incidence of diabetes and lower levels of fasting insulin. These patients also have better vascular health, with increased flexibility in blood vessels and less arterial stiffening, which results in less heart disease.

Dr. Douglas Vaughan, the lead author of the study, explained another bonus the Amish with the mutation have, which is a lower level of a protein called PAI-1 (plasminogen activator inhibitor,) which is known to be involved in the aging process. Dr. Vaughn explained, "The findings astonished us because of the consistency of the anti-aging benefits across multiple body systems. For the first time we are seeing a molecular marker of aging (telomere length), a metabolic marker of aging (fasting insulin levels) and a cardiovascular marker of aging (blood pressure and blood vessel stiffness) all tracking in the same direction in that these individuals were generally protected from age-related changes. That played out in them having a longer lifespan. Not only do they live longer, they live healthier. It's a desirable form of longevity. It's their ‘health span.'"

The mutation is that only one copy of the relevant gene exists in some of the Amish. Those who have two copies do not have the same protective effect against diabetes. So what can be done with this information? Vaughn's team at Northwestern has partnered with scientists at Tohoku University in Japan and is testing an oral medication, TM5614, which tamps down the action of PAI-1. The drug has been tested in Japan on humans already, with Phase 1 trials complete and Phase 2 beginning soon. Northwestern will be starting trials of it, with study participants who have Type 2 diabetes and obesity, shortly. Check out the video below to see how this work could advance the science of aging.

Sources: Northwestern University, Journal article, Science Advances, New York Times

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 05, 2021
Genetics & Genomics
Genetic Mutations May Not be Related to the Aging Process
OCT 05, 2021
Genetic Mutations May Not be Related to the Aging Process
As our body ages, cells have to divide to replenish those that become worn out or damaged. Most cells also carry the gen ...
OCT 05, 2021
Drug Discovery & Development
Drug repurposing for COVID-19
OCT 05, 2021
Drug repurposing for COVID-19
The coronavirus disease that began in 2019 (COVID-19) has infected nearly 235 million individuals and led to t ...
OCT 05, 2021
Immunology
Inflammation Overload Triggers 'Microclots' in COVID Long-Haulers
OCT 05, 2021
Inflammation Overload Triggers 'Microclots' in COVID Long-Haulers
Months after COVID symptoms have subsided, some individuals continue to grapple with the lingering effects of the infect ...
OCT 06, 2021
Genetics & Genomics
Signs of Huntington's Disease in Early Embryonic Development
OCT 06, 2021
Signs of Huntington's Disease in Early Embryonic Development
Huntington's disease is a neurodegenerative disorder that's caused by mutations in the huntingtin gene. People can be di ...
OCT 12, 2021
Health & Medicine
Atopic Dermatitis: A Harbinger of Autoimmune Diseases?
OCT 12, 2021
Atopic Dermatitis: A Harbinger of Autoimmune Diseases?
New research published in Allergy, Asthma & Clinical Immunology found an increased risk of autoimmune disease develo ...
OCT 19, 2021
Cardiology
Can Optimism Save Lives?
OCT 19, 2021
Can Optimism Save Lives?
Throughout history, optimism has been viewed as a cornerstone of resilience. In the words of Helen Keller, optimism is t ...
Loading Comments...