OCT 12, 2016 3:44 PM PDT

Superantigen Toxins Attack the Body With An "Immune Storm"

WRITTEN BY: Kara Marker
The key ingredient in the recipe that make staphylococcus and streptococcus infections so dangerous? Superantigen toxins. A new study from The Hebrew University of Jerusalem, twenty years in the making, showed how treatments for these infections could target the toxins instead of the bacteria themselves.
Staphylococcus aureus
Study researcher Professor Raymond Kaempfer explained their approach to providing an alternative to targeting antibiotic-resistant bacterial infections: 

"Rather than targeting the bacterial pathogens, which can then mutate to develop antibiotic resistance, host-oriented therapeutics have the advantage of remaining effective even against infections with antibiotic-resistant strains. This is because before the pathogens can cause severe disease, they must also pass through the same receptor bottleneck in the immune response, which we can block effectively."

Antibiotic-resistant staphylococcus and streptococcus infections can cause sepsis, toxic shock, pneumonia, and post-surgical infections, and due to their multi-drug resistance, scientists have many problems with effective antibiotic development.

The bacteria incorporate superantigens, virulence factors that are highly lethal to humans, to stimulate what scientists are calling the “immune storm,” an overactive immune response that turns inflammation from a protective mechanism into a harmful action. The immune storm caused by these bacterial toxins can lead to multiple organ failure, a condition exacerbated by the fact that the infections are untreatable by most antibiotics.

Kaempfer’s recent study focused on a specific mechanism of the antigen-mediated immune response: the binding of superantigens to surface receptors, a process facilitated by so-called “costimulatory” receptors. They found that superantigen binding, as opposed to normal antigen binding, involved the simultaneous binding of two receptors at once: B7-2 and CD28, the beginning of the “receptor bottleneck” Kaempfer described.
The direct binding of both the costimulatory receptors enhances the binding interaction and is responsible for the hyperactivation of T cells that causes the immune storm.

In the study, the researchers looked at the potential of antagonists they designed to block the action of bacterial toxins in order to prevent infection, using a “novel, host-oriented therapeutic approach.” They designed peptides containing pieces of the human B7-2 receptor protein that blocked the binding of superantigens to the costimulatory receptor targets, showing in animal models that they protected against toxic shock.

"The strategy of using peptides that mimic regions of a human immune receptor, to put the brakes on the excessive inflammatory response triggered by superantigen toxins, is a host-oriented strategy that is broadly effective against the diverse family of superantigens," said Prof. Raymond Kaempfer.

The study was recently published in the journal Proceedings of the National Academy of Sciences.
 


Sources: The Hebrew University of Jerusalem
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 05, 2020
Coronavirus
Age-old Immune Components Affecting COVID-19 Severity
AUG 05, 2020
Age-old Immune Components Affecting COVID-19 Severity
One of the most unsettling aspects of the coronavirus pandemic is the wide range of severity those affected seem to expe ...
OCT 11, 2020
Microbiology
Getting Closer to a Vaccine for Flaviviruses
OCT 11, 2020
Getting Closer to a Vaccine for Flaviviruses
Flaviviruses like dengue, West Nile, Zika, Japanese Encephalitis, and yellow fever infect over 400 million people a year ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 17, 2020
Immunology
6 Injections a Year Prevent HIV Infections
NOV 17, 2020
6 Injections a Year Prevent HIV Infections
Last year, around 1.7 million people became infected with HIV, with around half of these being women. Encouraging result ...
NOV 19, 2020
Immunology
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
NOV 19, 2020
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
Parasitic worms known as helminths have a complicated relationship with the immune systems of the hosts they invade. Ter ...
NOV 10, 2020
Neuroscience
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
NOV 10, 2020
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
Video:  Explains the challenges of delivering medicine to the brain, and possibly tools to pass the blood-brain bar ...
Loading Comments...