OCT 12, 2016 3:44 PM PDT

Superantigen Toxins Attack the Body With An "Immune Storm"

WRITTEN BY: Kara Marker
The key ingredient in the recipe that make staphylococcus and streptococcus infections so dangerous? Superantigen toxins. A new study from The Hebrew University of Jerusalem, twenty years in the making, showed how treatments for these infections could target the toxins instead of the bacteria themselves.
Staphylococcus aureus
Study researcher Professor Raymond Kaempfer explained their approach to providing an alternative to targeting antibiotic-resistant bacterial infections: 

"Rather than targeting the bacterial pathogens, which can then mutate to develop antibiotic resistance, host-oriented therapeutics have the advantage of remaining effective even against infections with antibiotic-resistant strains. This is because before the pathogens can cause severe disease, they must also pass through the same receptor bottleneck in the immune response, which we can block effectively."

Antibiotic-resistant staphylococcus and streptococcus infections can cause sepsis, toxic shock, pneumonia, and post-surgical infections, and due to their multi-drug resistance, scientists have many problems with effective antibiotic development.

The bacteria incorporate superantigens, virulence factors that are highly lethal to humans, to stimulate what scientists are calling the “immune storm,” an overactive immune response that turns inflammation from a protective mechanism into a harmful action. The immune storm caused by these bacterial toxins can lead to multiple organ failure, a condition exacerbated by the fact that the infections are untreatable by most antibiotics.

Kaempfer’s recent study focused on a specific mechanism of the antigen-mediated immune response: the binding of superantigens to surface receptors, a process facilitated by so-called “costimulatory” receptors. They found that superantigen binding, as opposed to normal antigen binding, involved the simultaneous binding of two receptors at once: B7-2 and CD28, the beginning of the “receptor bottleneck” Kaempfer described.
The direct binding of both the costimulatory receptors enhances the binding interaction and is responsible for the hyperactivation of T cells that causes the immune storm.

In the study, the researchers looked at the potential of antagonists they designed to block the action of bacterial toxins in order to prevent infection, using a “novel, host-oriented therapeutic approach.” They designed peptides containing pieces of the human B7-2 receptor protein that blocked the binding of superantigens to the costimulatory receptor targets, showing in animal models that they protected against toxic shock.

"The strategy of using peptides that mimic regions of a human immune receptor, to put the brakes on the excessive inflammatory response triggered by superantigen toxins, is a host-oriented strategy that is broadly effective against the diverse family of superantigens," said Prof. Raymond Kaempfer.

The study was recently published in the journal Proceedings of the National Academy of Sciences.
 


Sources: The Hebrew University of Jerusalem
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUL 07, 2019
Microbiology
JUL 07, 2019
The Right Cocktail of Gut Microbes may Prevent or Reverse Food Allergies
Food allergies are a growing public health concern. New work may help pave the way for a therapeutic that reduces or stops allergies....
AUG 17, 2019
Cell & Molecular Biology
AUG 17, 2019
How Neutrophils are Involved in Gallstone Formation
Gallstones form in the gallbladder, and can be as tiny as a grain of sand or as big as a golf ball....
OCT 22, 2019
Cell & Molecular Biology
OCT 22, 2019
New RNA Observation Shows Previously Unkown Attachment to Sugar
Scientists in the Bertozzi at Staford University have published surprising observations of glycan sugars attached directly to RNA during glycosylation.&nbs...
JAN 07, 2020
Immunology
JAN 07, 2020
"Good" T Cells Can Go "Bad," But in the Case of Cancer, That's A Good Thing
T cells may be able to reach their full potential in the fight against cancer with a little nudge. In 2010, scientists first observed CD4+ T cells transiti...
FEB 06, 2020
Drug Discovery & Development
FEB 06, 2020
China Begins Trials for Antiviral Drug to Tackle Coronavirus
So far, coronavirus has infected over 31,493 people globally, and has killed 638. Although 1,563 people have reportedly recovered, due to its fast-spreadin...
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive protein on the surface of T cells and t...
Loading Comments...