DEC 06, 2016 07:48 PM PST

New Technology Helps You "Turn Off" Your Asthma

WRITTEN BY: Kara Marker
Scientists have discovered a cellular switch that can be turned “on” or “off,” which could be vital for the future of asthma treatments, especially in the prevention of asthma attacks. By researching a specific inflammatory pathway, researchers from Johns Hopkins University have gained control over this cellular switch.
Source: NPR
"Asthma patients are constantly firing through this pathway because [some] proteins are stuck in the 'on' position, without proper control by other proteins that shut down this reaction," said Nicola Heller, PhD.

Asthma is characterized by an excess population of M2 macrophages in the lungs. M2 macrophages in individuals free of asthma are only activated to “clean up inhaled allergens and foreign particles.” After cleaning is complete, they are deactivated and remain dormant until needed again. But in asthmatic individuals, M2 macrophages linger after completing their job. Even more, these cells recruit other inflammatory cells that can trigger an asthma attack.

"One of the advantages of working with lung macrophages is that they are one of the first cells that see anything that gets put in an inhaler," Heller said. "So we hope to modulate their activity in this way."

Many individuals who have experienced an asthma attack describe the event as if “you are drowning in air,” “someone is sitting on your chest,” or “there’s a cloud in your lungs.” Technically speaking, an asthma attack is an inflammatory obstruction of the bronchial tubes, which provide the primary tunnel for air flowing in and out of the lungs.

In the past, Heller’s research led to the discovery of an inflammatory pathway that begins with a chemical messenger called interleukin 4 (IL-4). The messenger passes through a protein called IRS-2 before activating M2 macrophages via the inflammatory pathway. Other proteins can step in and stop the action of IRS-2, and these very proteins are coincidentally missing in the M2 macrophages of people with allergies but present in healthy individuals.

During the present study, Heller and the team from Johns Hopkins dove deeper into the IRS-2 pathway, studying the two proteins involved in the signaling pathway that activate M2 macrophages: GRB10 and p70S6K. They observed chemical changes of IRS-2 in cultures of human white blood cells, which is where they found that IRS-2 appears in two different forms, essentially “off” and “on.” “Off” prevents GRB10 and p70S6K from signaling the activation of cells to become M2 macrophages.

"If you prevent these cells from becoming the M2 type, you can potentially stop the continued inflammation and long-term structural changes," Heller explained..

They found that GRB10 and p70S6K activity increased after IL-4 exposure, in comparison to GRB10 and p70S6K proteins not exposed to the chemical messenger. More of their studies involved small interfering RNAs, used to inhibit the function of GRB10 and p70S6K. This inhibition resulting in decreased activity of the two proteins and more produced of the “on” form of IRS-2.

"This confirmed for us that without properly functioning GRB10 and p70S6K, the cells could not turn off IRS-2 signaling and M2 production," Heller said.

In the future, the researchers plan on explore further the implications of the results, and in mice lung models, they will test efficacy of drugs that mimic the function of GRB10 and p70S6K to inhibit the development of M2 macrophages.

Heller's study was recently published in the Journal of Biological Chemistry.
 


Sources: Johns Hopkins Medicine, American College of Allergy, Asthma, & Immunology
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUN 21, 2018
Immunology
JUN 21, 2018
The Silver Tsunami: An Aging Immune System and Cancer
Why do cases of cancer become more common as we get older? Scientists interested in explaining the so-called “Silver Tsunami” phenomenon look t...
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that...
JUN 30, 2018
Immunology
JUN 30, 2018
CD4 T Cells Responsible for Inflammatory Bowel Disease
A specific subset of immune cells could be targeted to better treat inflammatory bowel disease (IBD). A new University of Alabama at Birmingham study point...
JUL 30, 2018
Immunology
JUL 30, 2018
Traumatic Childhood to Addiction, an Immune System Problem
Childhood adversity alters the immune system which contributes to increased risk of addiction as an adult....
JUL 31, 2018
Immunology
JUL 31, 2018
The Immune Systems Molecular Alphabet
Lab-designed nucleic acid nanoparticles elicit varied and specific immune response from immune cells based on shape, size, and formulation of each particle....
AUG 06, 2018
Immunology
AUG 06, 2018
Maternal Dengue Immunity Protects Against Infant Zika Infection
Maternal Dengue immunity produces CD8+ T cells that protect against fetal Zika infection preventing zika-related malformations....
Loading Comments...