MAR 09, 2017 07:49 PM PST

T Cells "Loosen Up" to Recognize Pathogens Better and Faster

WRITTEN BY: Kara Marker

Senior author of a new Science Signaling study Dr. Manish Butte describes T cells as like “the shy person at the office holiday party who acts stiff until they loosen up a bit.” Butte is talking about T cells interacting with antigen-presenting cells, because the reaction between these two literally depends on whether T cells are loose or stiff.

T cells are produced in the thymus and promote cell-mediated immune response, also known as the adaptive immune response. Credit: Pulmonary Fibrosis News

Antigen-presenting cells (APCs) display bits of pathogenic or cancerous proteins, waiting for T cells that are designed to recognize the specific antigens they are displaying on their cell surface in order to trigger an immune response. A T cell interaction with an antigen-presenting cell (APC) occurs in three steps.

  1. The initial fraternization: A T cell binds to an APC to see if there is a match

  2. The identification: The T cell recognizes an antigen on an APC and communicates with the APC to find other potential nearby APCs displaying the same antigen

  3. The activation: As the T cell continues to bind to the APC, it becomes activated, a process necessary for T cells to dive into the bloodstream prepared to find the pathogen the APC was trying to warn the T cell about

With these steps fully understood, Butte and other researchers from the University of California Los Angeles Health Sciences turned to investigate another factor that matters in the scheme of the immune response: the stiffness or softness of the T cells; stiff cells react more slowly to activation than soft cells.

"Until now, we had a limited understanding of what controls T cell activation," Butte explained. "We wanted to identify how to both encourage and speed up T cell activation for fighting infections and cancers and to disrupt it in order to prevent immune disease. Now that we understand the precise steps taking place, our findings suggest that altering T cell stiffness with drugs could one day help us thwart diseases where T cells are too active or not active enough."

Butte introduced a new approach to observe T cell activity in real-time at the nano-level: a technology called an atomic-force microscope. This approach helped them identify the pathway in charge of a T cell being stiff instead of soft, allowing a future opportunity for the development of drugs that can mimic the natural pathway toward T cell softness, introducing an entirely new way to manipulate the immune system.

"We can't talk about precision medicine and still use a sledgehammer to treat disease," Butte said. "By exploiting the mechanism we discovered to soften T cells, we could accelerate vaccine responses so a patient won't need multiple boosters and months of waiting to get full immunity. Or we could stiffen up T cells to prevent the body from rejecting transplanted organs."

Source: University of California Los Angeles Health Sciences

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUL 25, 2018
Immunology
JUL 25, 2018
T Cell Response to Ebola Virus Proteins
Killer T cells of Ebola survivors respond better to nucleoproteins, not glycoproteins, potentially influencing Ebola vaccine development....
SEP 04, 2018
Immunology
SEP 04, 2018
Development of Damaging Immune Cells in Tuberculosis Infection
Development of damaging white blood cells occurs during Tuberculosis infection leading to a maladaptive immune response....
OCT 01, 2018
Immunology
OCT 01, 2018
Fate of the T Cell
The immune system consists of a variety of different cell types. But how do the cells undergo differentiation? A study recently published in Science provides insight....
OCT 31, 2018
Immunology
OCT 31, 2018
Masking the Pathogen
Researchers at Penn State have revealed bacterial pathogens capable of creating components used for DNA replication without the use of metal ions allowing them to evade the immune system...
NOV 07, 2018
Immunology
NOV 07, 2018
Is Your Brain Asking for High Blood Pressure?
Study finds that the brain is sending signals to the bone marrow to increase blood pressure....
NOV 13, 2018
Immunology
NOV 13, 2018
What Do Heart Disease and Autoimmune Diseases Have in Common?
Researchers at Washington University identify the link between autoimmune diseases and heart disease in mouse model...
Loading Comments...