MAR 09, 2017 8:29 PM PST

The Impact of Neanderthal DNA on Human Gene Expression

WRITTEN BY: Carmen Leitch

Neanderthals died off 40,000 years ago, but not before passing on some of their genes to humans, who have in turn carried them forward. It's not clear how much influence they might have had on human genes, but new work has provided some insight. Reporting in Cell, investigators have found evidence to support the idea that neanderthal genes are impacting gene expression, and that it may be having an effect on characteristics such as height, or the risk of developing health issues like schizophrenia or lupus. The video below discusses the research.

"Even 50,000 years after the last human-Neanderthal mating, we can still see measurable impacts on gene expression," explained study co-author Joshua Akey a geneticist at the University of Washington School of Medicine. "And those variations in gene expression contribute to human phenotypic variation and disease susceptibility."

Previous work has linked Neanderthal genes to various traits including depression, fat metabolism and risk for lupus, but there has not been any indication of the exact nature of the relationship. The lack of RNA, the genetic intermediary that cells transcribe from DNA, has severely limited the ability of scientists to understand how Neanderthal genes may have functioned. Instead researchers have to study the Neanderthal sequences carried by modern humans.

The scientists wanted to look at RNA for this research; they assayed a dataset called the Genotype-Tissue Expression (GTEx) Project to find human genomes with both Neanderthal and modern human versions of any particular gene. A direct comparison of the gene sets by using 52 different tissues as an expression model. There was indeed a difference between the different versions of the genes in many cases.

"We find that for about 25% of all those sites that we tested, we can detect a difference in expression between the Neanderthal allele and the modern human allele," explained the first author of the report, Rajiv McCoy, a UW postdoctoral researcher.

The graphical abstract from the work / Credit: Cell McCoy et al 2017

There were especially low levels of Neanderthal genes being expressed in the brain and testes. It's possible therefore that those tissues underwent a more rapid evolution since our divergence from Neanderthals around 700,000 years ago. "We can infer that maybe the greatest differences in gene regulation exist in the brain and testes between modern humans and Neanderthals," said Akey.

The research has indicated that the Neanderthal version or allele of the ADAMTSL3 gene s\is one that both affect height and lowers the risk of schizophrenia. "Previous work by others had already suggested that this allele affects alternative splicing. Our results support this molecular model, while also revealing that the causal mutation was inherited from Neanderthals," said McCoy. 

After DNA is transcribed into RNA, various modifications and edits can be made to the molecule by the cell. One such modification is alternative splicing, different ways to dice up the RNA; if a Neanderthal mutation is in the genome, the cell edits out a portion of the RNA that normally remains in the modern, human transcript. As such, the protein made from that RNA is changed, all due to the Neanderthal contribution to the genome. There is still much more work to be done before this mechanism is conclusively called causative for the changes in height or other characteristics, but this is a solid piece of preliminary evidence.

"Hybridization between modern humans and Neanderthals increased genomic complexity," explained Akey. "Hybridization wasn't just something that happened 50,000 years ago that we don't have to worry about anymore. Those little bits and pieces, our Neanderthal relics, are influencing gene expression in pervasive and important ways."

 

Sources: ScienceDaily via Cell Press, Cell 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 15, 2020
Cell & Molecular Biology
JAN 15, 2020
Cell Division Research Reveals More About a Protein That's Elevated in Cancer
Cell division is a carefully regulated process, cancer is the result when it gets out of control....
FEB 03, 2020
Cell & Molecular Biology
FEB 03, 2020
Brain Organoids May Not be Living Up to the Hype
Cells can be grown in special ways to create three-dimensional, miniature models of organs. But how good are they?...
FEB 05, 2020
Cell & Molecular Biology
FEB 05, 2020
Gut Bacteria Affect How the Colon Moves
The contraction and relaxation of muscles in the wall of the colon helps move food along and can become dysfunctional....
FEB 21, 2020
Health & Medicine
FEB 21, 2020
Should You Really be Scared of the Coronavirus?
As of February 21st, the death toll for coronavirus reached 2,250, 55,707 currently infected, of which 12,066 (22%) are in a serious or critical condition....
FEB 23, 2020
Cancer
FEB 23, 2020
Celular aging reexamined
New research published in Genes and Development has identified one of the mysteries of aging. According to scientists at Sanford Burnham Prebys Medical Dis...
FEB 26, 2020
Cell & Molecular Biology
FEB 26, 2020
Does the rainforest hold the cure to cancer?
Scientists discover molecule within a tree root from the tropical rainforest that has anti-cancer properties....
Loading Comments...