APR 09, 2018 12:55 PM PDT

Unique Molecular Interactions Dictate B Cell Tolerance

WRITTEN BY: Kara Marker

An important cellular reaction mediates part of the immune system responsible for tolerance. Without tolerance, the immune system would target harmless “self” cells like it does in the case of autoimmune disease. From the Medical University of South Carolina, scientists uncover a new checkpoint involved in regulating B cells.

Representation of a B cell.

Tolerance in the immune system is vital for preventing autoimmune reactions against harmless substances that the immune accidentally recognizes as dangerous. There are more than 80 types of autoimmune diseases, and there are 24 million people affected by autoimmune diseases in the United States. Women are more likely than men to have an autoimmune disease.

Researchers from the present study have historically been focused on cellular mechanisms that regulate the adaptive, or specific immune response, and the innate, or non-specific immune response. They are especially interested in uncovering the role of the immune system in cancer and autoimmune disease. Two proteins are especially important to their studies: TGF-beta and GARP.

TGF-beta is a “master cytokine” that regulates inflammation and tolerance. Recent research described GARP binding TGF-beta on regulatory T cells and platelets, affecting their activity. But the present study is the first to describe how GARP and TGF-beta binding affects activity of peripheral B cells in the context of immune tolerance.

Researchers found that when B cells are activated, GARP is expressed, indicating it might be a potential checkpoint for B cell tolerance. They used two preclinical models to understand more about the effect of GARP, one with GARP overexpressed and one with GARP underexpressed.

When GARP was overexpressed, B cells proliferated and activated less, and underexpression of GARP led to the development of spontaneous lupus-like disease, an autoimmune disease. Researchers also compared GARP expression across different populations of B cells.

"If you look at GARP expression on B cells, usually it's only expressed on activated B cells in the periphery,” Zihai Li, MD, PhD. “But in the gut, it looks like, even in the steady state, GARP is expressed.”

Why the gut? Researchers explain that because it is exposed to the environment, tissues of the gastrointestinal (GI) tract have to keep track of bacteria, viruses, food antigens, and self-antigens. B cells in an area called “Peyer’s patches” have an increased level of GARP expression. And without GARP, B cell proliferation and activation increased. Researchers theorize that the interaction between GARP and TGF-beta is most important in the gut because B cells need to be able to tolerate harmless food and self antigens.

"Our work started from a very simple question: What does GARP do? But as you can see, we have now shown that this pathway is important for autoimmune disease in a mouse model,” Li said. “And our work in humans suggests that this pathway is really relevant to human health.”

The present study was published in the journal JCI Insight.

Sources: Current Opinion in Immunology, Medical University of South Carolina

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 26, 2018
Immunology
SEP 26, 2018
What Superbug? A New Antibiotic Contender
Scientists from a biotechnology corporation, Genentech, have altered a protein that blocks a signaling pathway in gram-negative bacteria to engineer a new antibiotic, currently called G0775,...
OCT 09, 2018
Immunology
OCT 09, 2018
Complement Function Expands
Additional roles to complement protein C3 have been described in work performed by a team of researchers at the Lund University in Sweden...
OCT 30, 2018
Drug Discovery
OCT 30, 2018
Re-sensitizing Drug-resistant Human Tumor Cells
Understanding how cancer cells avoid death despite their DNA being damaged will create new strategies to enhance cancer cell killing through chemotherapy t...
NOV 13, 2018
Immunology
NOV 13, 2018
Yin & Yang: The Duality of Cancer-Associated Fibroblasts in Pancreatic Cancer
Pancreatic Cancer is a devastating disease. Fifty-five thousand new patients were diagnosed this year in the United States (1). It is painful and usua...
NOV 19, 2018
Cell & Molecular Biology
NOV 19, 2018
How Mitochondria can Help the Cell Fight Pathogens
Some pathogens can get around out bodies' natural defense mechanisms. So our body developed a Plan B....
DEC 09, 2018
Immunology
DEC 09, 2018
A Better Human Immune System: In Mice
We've cured cancer and autoimmune disease in mice many times over....
Loading Comments...