NOV 02, 2015 5:04 PM PST

Deciphering Salmonella Host Specificity

WRITTEN BY: Kerry Evans
What makes a strain of Salmonella infect cows, but not humans or birds?

Researchers at the University of Pennsylvania combed the genomes of 580 Salmonella strains for mutations that could determine host specificity.  The group used a technique called “genome-wide association studies” (GWASs) to identify the mutations. GWASs analyze genome sequences to identify mutations associated with specific traits (like diseases).  Often, these analyses focus on SNPs - single nucleotide polymorphisms.  SNPs are genetic mutations that change one DNA base to another - an adenine into a thymine, for example.  Many SNPs are harmless, but some result in amino acid changes.
 
Salmonella displays host specificity.

Salmonella enterica serovar Typhimurium contained a large number of SNPs within genes for surface and secreted proteins.  This particular serovar (or strain) is a common cause of food poisoning in humans. Humans contract this strain of Salmonella by eating contaminated food.  Since Salmonella is a facultative intracellular pathogen, it is able to infect cells that line the intestine, leading to symptoms of food poisoning (diarrhea, nausea, vomiting).  Salmonella prefers to live in association with its host, but is able to survive in the environment - on produce, for example - for weeks.   

According to study author Dieter Schifferli, “we saw this huge variation in proteins on the surface of bacteria or in secretions, which are really the first lines of interaction with the host … if there was so much variation, it suggests it must be linked to something important”.  

Based on their findings, the group focused their attention on the gene for the proteinaceous surface adhesin FimH.  They introduced cow and human-specific fimH mutations into E. coli and tested the bacteria’s ability to adhere to host cells.  They found that a single amino acid change in human-specific FimH caused E. coli to preferentially bind to cow cells.  In other words, this relatively small mutation was responsible for a change in host specificity.  

Schifferli now plans to determine whether there are genetic differences that determine whether Salmonella will cause mild food poisoning or more serious disease.  

Sources: Eurekalert, Salmonella.org, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JAN 24, 2020
Microbiology
JAN 24, 2020
Pathogenic E. coli Tends to Come From Poor Hygiene, Not Contaminated Food
A new study has shown that antibiotic-resistant E. coli spreads primarily because of poor hygiene....
JAN 24, 2020
Cell & Molecular Biology
JAN 24, 2020
Using a Bacterial Syringe to Deliver Proteins to Cells
Researchers want to use a pathogen's strategy for therapeutic purposes....
JAN 24, 2020
Microbiology
JAN 24, 2020
Viruses Can Escape the Effects of CRISPR by Shielding Their Genomes
Our world is filled with microbes, and in every kind of environment, they compete for supremacy, a competition that dates back to the origins of life....
JAN 24, 2020
Microbiology
JAN 24, 2020
Bacterial Growth That is Truly Cultured
Scientists have learned that when certain bacteria are paired together, they create patterns that look like flowers....
JAN 24, 2020
Microbiology
JAN 24, 2020
Photosynthetic Algae Found to Produce Methane
Cyanobacteria are microscopic blue-green algae. These naturally occurring microbes are common, but can also grow into toxic blooms....
JAN 24, 2020
Genetics & Genomics
JAN 24, 2020
Engineering Mosquitoes to Stop Dengue Virus Transmission
The dengue virus is transmitted by mosquitoes. It is found in over one hundred countries and threatens three billion people with a serious illness....
Loading Comments...