MAY 03, 2016 6:59 PM PDT

Aerobic respiration helps gut pathogens fluorish

WRITTEN BY: Kerry Evans
Antibiotics cure infections, right? Well, not always. A new study published in Cell Host & Microbe details how antibiotics can select for the growth of pathogenic bacteria in the gut.

Researchers from UC Davis found that antibiotics create a niche within the gut that helps pathogens like Salmonella flourish. Essentially, antibiotics wipe out the “good” bacteria living in the gut. These bacteria help us break down complex carbohydrates in dietary fiber, producing butyrate. Butyrate is taken up by intestinal epithelial cells and used to convert oxygen to carbon dioxide. Without the butyrate-producing bacteria, oxygen escapes into the intestinal lumen, creating an ideal environment for pathogenic Salmonella to grow.

According to study author Andreas Baumler, “Unlike Clostridia and other beneficial microbes in the gut, which grow anaerobically, or in the complete absence of oxygen, Salmonella flourished in the newly created oxygen-rich microenvironment after antibiotic treatment … in essence, antibiotics enabled pathogens in the gut to breathe”.
 
Antibiotics help Salmonella compete with gut flora.
The group showed that Salmonella coupled aerobic and nitrate respiration to grow in the guts of streptomycin-treated mice. They constructed a mutant that lacked the ability to use oxygen and nitrate and found that its fitness was severely compromised - after 4 days of infection, nearly 2,000-fold more wild type Salmonella were recovered compared to the mutant. Interestingly, similar numbers of the wild type and mutant cells were recovered from mice that had not been treated with streptomycin. This suggests that the ability to use oxygen and nitrate for respiration contributed to the so-called “post-antibiotic pathogen expansion”.

Interestingly, a decrease in the number of butyrate-producing bacteria has been linked to inflammatory bowel disease. Butyrate was found to decrease the production of proinflammatory cytokines in the gut by inhibiting the activity of NF-κB. Similarly, one study found that butyrate increased the number of T regulatory cells in the gut, possibly alleviating inflammation. According to study author Hiroshi Ohno, “butyrate is natural and safe as a therapy and in addition to that it is cheap, which could reduce costs for both patients and society”.
 

Sources: UC Davis, Cell Host & Microbe, Gut, Science 2.0
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAR 30, 2021
Microbiology
A Marburg Virus Treatment Approach is Identified
MAR 30, 2021
A Marburg Virus Treatment Approach is Identified
Marburg virus causes severe hemorrhagic fever; its fatality ratio can be as high as 88 percent. Researchers may have now ...
MAY 07, 2021
Space & Astronomy
Did Scientists Just Find Mushrooms on Mars?
MAY 07, 2021
Did Scientists Just Find Mushrooms on Mars?
While experts agree that most life on Earth would not be able to survive on Mars, NASA researchers have previously sugge ...
MAY 25, 2021
Microbiology
Concern Grows About Emerging H5N8 Flu Virus
MAY 25, 2021
Concern Grows About Emerging H5N8 Flu Virus
Though suspected outbreaks have been documented since 1878, the first confirmed outbreak of bird flu, a highly pathogeni ...
JUN 01, 2021
Immunology
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
JUN 01, 2021
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
Seasonal flu vaccines only work around 40 to 60 percent of the time, says the U.S. Centers for Disease Control and Preve ...
JUN 01, 2021
Microbiology
A Closer Look at a Potential Bioweapon
JUN 01, 2021
A Closer Look at a Potential Bioweapon
Francisella tularensis is a naturally occurring bacterium found throughout the Northern Hemisphere that is extremely vir ...
JUN 08, 2021
Microbiology
Virus Seems to Spread From Salmon Farms to the Wild
JUN 08, 2021
Virus Seems to Spread From Salmon Farms to the Wild
Chinook salmon can be infected by a pathogen called Piscine orthoreovirus (PRV) that is thought to cause heart, liver, a ...
Loading Comments...