JUN 13, 2016 8:10 AM PDT

New Material Developed That Quickly Kills E.coli

WRITTEN BY: Carmen Leitch
A new material has been created by researchers in Singapore that kills E. coli bacteria in 30 seconds.
As antibiotic resistance becomes a pertinent public health threat, alternatives to traditional antibiotic therapies have been sought. One area being explored is host defense peptides, also known as antimicrobial peptides or AMPs, natural parts of innate immune response found in every classification of life. AMPs are broad spectrum and have been demonstrated to kill everything from viruses to gram-negative bacteria with a variety of modes of action.
 E. coli after treatment with the new imidazolium oligomer. Image: Institute of Bioengineering and Nanotechnology
This new work, published in the journal Small, new developments in antimicrobial peptides are described. Scientists at the Institute of Bioengineering and Nanotechnology (IBN) at Agency for Science, Technology and Research (A*STAR) Singapore, led by Yugen Zhang, have made a molecule from a linked chain of chemicals, called imidazolium oligomers. They’ve demonstrated that it can kill E. coli bacteria by penetrating the cell membrane due in part to the chain structure. That is of particular benefit; traditional antibiotics leave the cell membrane intact, which can allow antibiotic resistance material to grow.
 One mode of AMP efficacy: a) Membrane gets coated with peptides b) Peptide is integrated into the membrane, thinning the outer leaflet, resulting in strain within the bilayer (jagged arrows) c) Phase transition and pore formation d) Transport of lipids and peptides into the inner leaflet e) Diffusion of peptides onto intracellular targets (in some cases) f) Membrane collapses into fragments, physically disrupting the target cell's membrane Image: Nature
"Our unique material can kill bacteria rapidly and inhibit the development of antibiotic-resistant bacteria. Computational chemistry studies supported our experimental findings that the chain-like compound works by attacking the cell membrane. This material is also safe for use because it carries a positive charge that targets the more negatively charged bacteria, without destroying red blood cells," explains Dr Zhang.

The imidazolium oligomers are simply a white powder that is soluble in water. The research team determined that if the powder was dissolved in alcohol, gels spontaneously formed. This stuff could be used in alcohol sprays that sterilize hospitals or homes.

“The global threat of drug-resistant bacteria has given rise to the urgent need for new materials that can kill and prevent the growth of harmful bacteria. Our new antimicrobial material could be used in consumer and personal care products to support good personal hygiene practices and prevent the spread of infectious diseases,” said the Executive Director of IBN, Professor Jackie Y. Ying.

While E. coli is normally found in the intestines of humans and animals, there are some strains that can cause serious illness and even death. That kind of bacterial infection is also contagious and can spread easily through contaminated food or water, or just from contact with people or animals. Good hygiene practices like hand washing can help prevent E. coli infections.

Other than E. coli, the team also tested IBN’s new material against other common strains of antibiotic-resistant bacteria and fungi, such as Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa. These pathogens can cause conditions ranging from skin infections to pneumonia and toxic shock syndrome. The material killed 99.9% of those microbes within just two minutes.

This rapid bacteria-killing material might just be a powerful new weapon against drug-resistant microbes.

Sources: A*STAR Sinagpore via Science Daily, Small via Wiley Online Library, Nature
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 31, 2020
Space & Astronomy
MAR 31, 2020
Can Viruses Survive in Outer Space?
Outer space is often depicted as a harsh environment. It’s effectively an airless vacuum, and anything residing th ...
APR 11, 2020
Microbiology
APR 11, 2020
Data Highlights Racial Disparities in COVID-19 Outcomes
As SARS-CoV-2 spreads in the United States, infecting and killing thousands, some racial data is finally being included ...
APR 24, 2020
Microbiology
APR 24, 2020
How Syphilis Evades the Immune System
The incidence of syphilis has been rising for the past two decades, and over 115,000 new cases were diagnosed in the US ...
APR 27, 2020
Microbiology
APR 27, 2020
CDC Adds to the List of COVID-19 Symptoms
The pandemic virus that causes COVID-19 has now infected nearly 3 million people, and killed over 200,000.
MAY 06, 2020
Cell & Molecular Biology
MAY 06, 2020
SARS-CoV-2 Can Infect Intestinal Cells
Once thought to cause symptoms that primarily affect the respiratory system, there has been evidence that the virus can ...
MAY 27, 2020
Cell & Molecular Biology
MAY 27, 2020
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
The surfaces of cells are decorated with receptors, and the interactions between receptors and their binding partners ar ...
Loading Comments...