AUG 28, 2016 11:35 AM PDT

Potential new Target for Fighting Pathogenic Bacteria Discovered

WRITTEN BY: Carmen Leitch
2 7 631
The bacterium Mycobacterium tuberculosis is among the world’s deadliest infectious pathogens. Those bacteria are able to utilize two alternate forms of metabolism depending on the needs of the microbe, and can switch back and forth between the two. 
Mycobacterium tuberculosis Bacteria, the Cause of TB  Scanning electron micrograph of Mycobacterium tuberculosis bacteria, which cause TB. / Credit: NIAID
In the course of an infection with M. tuberculosis, the bacteria needs energy, which it can get from the breakdown of lipids and fatty acids. In the course of the chemical reactions that cycle through the metabolism of those materials, a molecule is produced that is used for a different chemical reaction the microbe requires for synthesis of parts. The bacterium is able to optimize its chances for survival by maintaining the ideal balance between the energy producing reaction, or the biosynthesis reaction.
The molecule used in the different reactions is isocitrate. It seems as though the path the chemical takes is under the influence of enzymes that are key to the various chemical reactions in question.

Isocitrate dehydrogenase is an enzyme that maintains isocitrate as part of the fat metablism pathways; isocitrate lyase and maltase synthase move isocitrate into the biosynthetic pathway. While it is being used for biosynthesis, energy production is halted unless isocitrate is in continuous supply. Loss of the molecule is devastating to the bacterium, which means it could be a great way to kill bacterial infections from the pathogen.
Schematic of fluxes into the TCA cycle and glyoxylate shunt following shift from glucose (blue shading) to radiolabelled acetate (red shading). (b) Schematic of fluxes into the TCA cycle and glyoxylate shunt following shift from acetate (red shading) to radiolabelled glucose (blue shading). / Credit: Nature Communications Murima et al
Researchers at Swiss Federal Institute of Technology in Lausanne (EPFL) in the lab of John McKinney worked in collaboration with the lab of Uwe Sauer at Swiss Federal Institute of Technology in Zürich (ETH Zürich) to investigate how mycobacteria control the enzymes in charge of the balance of the reactions. To do so, they simply deleted the genes responsible for the enzymes in various strains of mycobacteria.

Their results, which were published in Nature Communications, demonstrated that there is no simple on-off switch behind the expression of the enzymes. The lead author of the work, Paul Murima, likens it to a thermostat. "If the temperature becomes too high, a thermostat cools the house down; if it gets too low it heats it up. Similarly, the mechanism that controls how isocitrate is used responds to negative feedback, and so it dampens 'noise' to maintain optimal levels,” he explained.

This makes the microbe able to quickly and easily respond to changes in the environment that affect what might be available as energy sources. Other pathogenic microbes like leprosy are mycobacteria that use this same survival strategy. While the mechanism is similar to that used by gut bacteria like E.coli, it is also different enough to mean that treatments that target mycobacteria would not affect the microbiome, making it a very attractive candidate for drug targets. 

Sources: AAAS/Eurekalert! via EPFL, Nature Communications
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 08, 2018
Cell & Molecular Biology
MAY 08, 2018
Advances in the Study of the Oral Microbiome
Scientists are learning more about the microbes that we carry in and on our bodies, and how they impact our health.
MAY 28, 2018
Clinical & Molecular DX
MAY 28, 2018
Bacterial Toxin Linked to Inflammatory Bowel Disease
Scientists have found evidence that it's not a bacterium, but one of its toxins, that is connected to, and possibly causing intestinal dysfunction.
JUN 11, 2018
Microbiology
JUN 11, 2018
Seeing Gene Transfer as it Happens
Microbes can pick up new pieces of genetic material; now it's been captured in action for the first time.
JUL 11, 2018
Microbiology
JUL 11, 2018
New Insight Into Bacterial Pathogenicity
Scientists have learned how some pathogenic bacteria stick to cells in the intestine, which gets their infection started.
AUG 06, 2018
Microbiology
AUG 06, 2018
How Undetected Viral Infections Impact our Health
It seems that when people are infected with CMV but don't have any obvious symptoms, there may still be effects.
AUG 13, 2018
Microbiology
AUG 13, 2018
Insight Into the Origins of Junk DNA - From Koalas
The human genome isn't only genes. There's also long, repetitive sequences with an unknown function and origin.
Loading Comments...