APR 21, 2017 7:19 PM PDT

Modulating Gene Expression in the Microbiome

WRITTEN BY: Carmen Leitch

Researchers have collected enough evidence to know that the community of microbes that resides in out gastrointestinal tract, the gut microbiome, has a major impact on human health. These bacterial communities have genomic material of their own that is far more plentiful than our own genetic material. While we can assay what bacterial species are living in guts based on genetic sequencing, that huge amount of material can interfere with precise investigations of exactly what effects the microbiome has on a variety of disorders such as obesity, autoimmune and infectious diseases, or behavioral issues.

To address that problem, investigators at Yale University have created new techniques for manipulating gene expression in a wide array of bacterial species that can reside in the microbiome. This could be a crucial breakthrough in understanding the influence and effects of gut microbes. The findings have been reported in Cell, and are outlined in the above video.

“We and others have been frustrated with the clumsy tools available for studying the microbiome — it felt like trying to perform surgery with boxing gloves,” explained the senior author of the report, Andrew Goodman, an Associate Professor of Microbial Pathogenesis at the Microbial Sciences Institute at West Campus. “We hope these new methods replace the boxing gloves with a scalpel.”

Related: Study Shows how a Modified Microbiome Causes Obesity

A research team that included first author Bentley Lim, as well as Michael Zimmermann and Natasha Barry of the Goodman lab, developed a “dimmer switch” that can control gene expression in the most common family of bacteria that lives in the human gut, Bacteroides. The researchers have utilized a synthetic chemical that is not present in mice or in their normal diet. Incredibly, the presence of this chemical can turn gene expression up or down or even off. Just by adding or removing this molecule from the drinking water of mice, the research team was able to monitor gene activity in the gastrointestinal tracts of live mice, in real time.

The scientists tested their tools, aiming to investigate how pathogens take advantage of sugars that have been stripped from the wall of the gut as bacteria scavenge for food. They were able to determine how long the pathogens could use those leftover energy sources. Their data can help explain how it’s possible for antibiotics to actually increase the amount of those sugars that are available to pathogens; it may also aid in creating more effective treatments for combating infectious diseases.

“We can now study bacterial communities in various states and pinpoint specific genes and pathways involved in a variety of functions,” Lim said. “If we are to find ways to intervene in these processes, we must first understand them at this level.”

 

Sources: Yale News, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Engineering Mosquitoes to Stop Dengue Virus Transmission
The dengue virus is transmitted by mosquitoes. It is found in over one hundred countries and threatens three billion people with a serious illness....
JAN 20, 2020
Microbiology
JAN 20, 2020
Microbes Create a More Sustainable Building Material
Concrete is the second most widely consumed resource on the planet (after water), and it has a massive carbon footprint....
FEB 19, 2020
Microbiology
FEB 19, 2020
Cases of Coronavirus SARS-CoV-2 Start to Rise Outside of China
The novel coronavirus that recently emerged in Hubei province, China is called SARS-CoV-2, and it can cause a wide range of symptoms....
MAR 01, 2020
Microbiology
MAR 01, 2020
Microbes Can Make Changes to Bile Acids That Alter Gene Expression
The microbes in our digestive tract can affect human health in many ways....
MAR 09, 2020
Genetics & Genomics
MAR 09, 2020
Researchers Alter How Bacteria Communicate
The bacterium Escherichia coli comes in many forms, and researchers have used a harmless strain of it to redesign how the microbes communicate....
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of critical roles....
Loading Comments...