AUG 22, 2016 7:29 AM PDT

How the Brain Reads

How the brain processes written language and is able to cognitively decode words into complex concepts is an area of neuroscience that is debated vigorously. Until the 20th century neuroscientists didn’t even agree that there was a brain region dedicated to processing written words. More recently the research into this part of human cognition has been focused on the part of the brain known as the left mid fusiform gyrus. It’s this part of the brain that experts believe is responsible for decoding words.
 What the word center of the brain does
In a study conducted with epileptic patients at the University of Pittsburgh’s Learning and Research Development Center (LRDC) direct neural recordings and brain stimulation was used to study this part of the brain. Avniel Ghuman, an assistant professor in the University of Pittsburgh Department of Neurological Surgery and Elizabeth Hirshorn of Pitt's Learning Research and Development Center (LRDC), along with colleagues from the Department of Psychology and Center for the Neural Basis of Cognition conducted the research which was published in July in the journal Proceedings of the National Academy of Sciences.
 
The patients in the study all suffered from drug-resistant epilepsy and elected to undergo surgery to see if their epilepsy could be better controlled.  As part of their operations, neurosurgeons implanted electrodes in the patients' visual word form area. This was an unprecedented way to look at this part of the brain in real time and gain a better understanding of the neurobiology involved in reading.
 
The first part of the research involved electrical brain stimulation through the implanted electrodes. The stimulation was painless for the patients and caused a disruption in the normal process of visual word decoding. This electrical disruption adversely affected the patients' ability to read words. One patient dramatically misread letters, and another felt that there were words and parts of words present that did not exist on the page of text she was trying to read.  Interestingly this electrical stimulation did not impact the patients’ ability to name objects or identify faces.
 
The second phase of the study involved recording the electrical activity of this part of the brain whilst patients were reading words. Using complex machine learning algorithms the team at the LRDC was able to discern from the electrical brain activity which word a patient was reading at a particular portion of the readout. Being able to glean this information from electrical activity scans suggests that the brain processes even very similar words (the examples used were the words “lint” and “hint”) precisely and in different ways.
 
In a press release lead study author Elizabeth Hirshorn stated, "This study shows that the visual word form area is exquisitely tuned to the fine details of written words and that this area plays a critical role in refining the brain's representation of what we are reading. The disrupted word and letter perception seen with stimulation provides direct evidence that the visual word form area plays a dedicated role in skilled reading. These results also have important implications for understanding and treating reading disorders. The activity in the visual word form area, along with its interactions with other brain areas involved in language processing, could be a marker for proficient reading. Having a better understanding of this neural system could be critical for diagnosing reading disorders and developing targeted therapies." The video below provides insight into the brave study participants who volunteered for this groundbreaking research, check it out.

Sources: University of Pittsburgh, PNAS, Cognitive Neuroscience Society
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
DEC 01, 2019
Cell & Molecular Biology
DEC 01, 2019
Learning More About Why We Freeze Up When We're Startled
Researchers have used a common molecular model, the fruit fly, to learn more about why we suddenly freeze when we're startled....
DEC 09, 2019
Neuroscience
DEC 09, 2019
Russian Cows Use VR Headsets to Increase Milk Production
Harsh weather conditions, particularly those found during winter months, are known to lead to a decrease in milk production among cows. To tackle this, Rus...
DEC 12, 2019
Health & Medicine
DEC 12, 2019
Holiday Sweets May Trigger Depression
While it may be the most wonderful time of the year filled with an abundance of sweet treats, new research cautions those prone to depression to put that c...
DEC 30, 2019
Neuroscience
DEC 30, 2019
Amyloid Plaques May Not Come First in Alzheimer's
It’s commonly thought that excessive build-up of amyloid plaques, destroying the connections between nerve cells, is the first sign of Alzheimer&rsqu...
JAN 09, 2020
Neuroscience
JAN 09, 2020
Increased Autism Risk for Children Born with Heart Disease
Children born with congenital heart disease (CHD) have a life expectancy comparable to that of the general population. However, despite advances in medical...
FEB 24, 2020
Cell & Molecular Biology
FEB 24, 2020
How Brain Cells Can Protect Muscles
Protein buildup is not only a problem for the brain, it can also impair muscles....
Loading Comments...