SEP 08, 2018 10:22 PM PDT

'Robat' Uses A Bat Like Approach

WRITTEN BY: Nouran Amin

Credit: newyorker.com

According to a study published in PLOS Computational Biology, a fully autonomous bat-like terrestrial robot called ‘Robat’ utilizes echolocation to navigate and map a novel environment based solely on sound. Echolocation is used by bats to map novel environments while simultaneously mining through them by emitting sound and retrieving information from the echoes that are reflected from objects in their surroundings.

Multiple theoretical frameworks were proposed to explain why bats attempt solve one of the most difficult issues in robotic systems, however, there has been few efforts made to create an actual robot that can mimic the abilities of bats. Unlike many previous attempts to place sonar in robotics, researchers developed a robot that utilizes a ‘biological bat-like approach’ consisting of sound emission as well as analyzing the echoes returned to develop a map of space.

Robat includes an ultrasonic speaker that can mimic the mouth, releasing frequency modulated chirps at a rate normally used by bats. Additionally, it includes two ultrasonic microphones that mimic ears and can move autonomously through a novel outdoor environment, “mapped it in real time using only sound’.

Credit: Eliakim et al. via Science Daily

More specifically, Robat will delineate the edges of objects it comes across, and categorizes them using an artificial-based neural network, therefore producing “a rich, accurate map of its environment while avoiding obstacles”. To illustrate, when Robat reaches a dead end, it utilizes classification abilities to determine if it was blocked by a wall or perhaps by a plant through which it can continue to move.

"To our best knowledge, our Robat is the first fully autonomous bat-like biologically plausible robot that moves through a novel environment while mapping it solely based on echo information -- delineating the borders of objects and the free paths between them and recognizing their type," explains Itamar Eliakim, the author of the study. "We show the great potential of using sound for future robotic applications."

Source: PLOS Computational Biology

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
SEP 25, 2018
Microbiology
SEP 25, 2018
Leaning More About the Microbes We're Constantly Exposed to
Every day our bodies come into direct contact with whatever microbes, chemicals or particles are in our environment....
SEP 28, 2018
Cell & Molecular Biology
SEP 28, 2018
New Holotomography Microscope for Imaging Live Cells in 3D
Instead of analyzing fixed, treated cells, researchers can now peek inside of live cells that haven't been changed by reagents or treatments....
NOV 11, 2018
Technology
NOV 11, 2018
Creating Nanoscale-sized Electromechanical Devices.
According to a study published in Nature Communications, researchers at the University of Illinois at Urbana-Champaign discovered new methodology in creati...
DEC 02, 2018
Space & Astronomy
DEC 02, 2018
NASA is Learning More About InSight's Landing Site Post-Landing
Following a six-month journey through space, NASA’s InSight spacecraft made a safe-and-sound landing on Mars’ barren surface last week. Comment...
DEC 03, 2018
Neuroscience
DEC 03, 2018
Stentrode: No Surgery Focused Brain stimulation
Brain stentrode, a brain interfacing electrode that is implanted within a blood vessel...
DEC 09, 2018
Technology
DEC 09, 2018
Simplifying Film Animation via Drones
The film industry is believed by many computer scientists to be soon revolutionized by the use of drones especially in their ability to replace dozens of c...
Loading Comments...