APR 21, 2015 9:55 AM PDT

Technology can transfer human emotions to your palm through air, say scientists

WRITTEN BY: Robert Woodard
University of Sussex researchers used a system called UltraHaptics to pinpoint areas of the hand that could be stimulated to evoke different emotions.Human emotion can be transferred by technology that stimulates different parts of the hand without making physical contact with your body, a University of Sussex-led study has shown.

Sussex scientist Dr Marianna Obrist, Lecturer at the Department of Informatics, has pinpointed how next-generation technologies can stimulate different areas of the hand to convey feelings of, for example, happiness, sadness, excitement or fear.

For example, short, sharp bursts of air to the area around the thumb, index finger and middle part of the palm generate excitement, whereas sad feelings are created by slow and moderate stimulation of the outer palm and the area around the 'pinky' finger.

The findings, which will be presented April 21 at the CHI 2015 conference in South Korea, provide "huge potential" for new innovations in human communication, according to Dr Obrist.

Dr Obrist said: "Imagine a couple that has just had a fight before going to work. While she is in a meeting she receives a gentle sensation transmitted through her bracelet on the right part of her hand moving into the middle of the palm. That sensation comforts her and indicates that her partner is not angry anymore.

"These sensations were generated in our experiment using the Ultrahaptics system.

"A similar technology could be used between parent and baby, or to enrich audio-visual communication in long-distance relationships.
"It also has huge potential for 'one-to-many' communication -- for example, dancers at a club could raise their hands to receive haptic stimulation that enhances feelings of excitement and stability."

Using the Ultrahaptics system -- which enables creating sensations of touch through air to stimulate different parts of the hand -- one group of participants in the study was asked to create patterns to describe the emotions evoked by five separate images: calm scenery with trees, white-water rafting, a graveyard, a car on fire, and a wall clock. The participants were able to manipulate the position, direction, frequency, intensity and duration of the stimulations.

A second group then selected the stimulations created by the first group that they felt best described the emotions evoked by the images. They chose the best two for each image, making a total of 10.

Finally, a third group experienced all 10 selected stimulations while viewing each image in turn and rated how well each stimulation described the emotion evoked by each image.

The third group gave significantly higher ratings to stimulations when they were presented together with the image they were intended for, proving that the emotional meaning had been successfully communicated between the first and third groups.

Now Dr Obrist has been awarded £1 million by the European Research Council for a five-year project to expand the research into taste and smell, as well as touch.

The SenseX project will aim to provide a multisensory framework for inventors and innovators to design richer technological experiences.
Dr Obrist said: "Relatively soon, we may be able to realise truly compelling and multi-faceted media experiences, such as 9-dimensional TV, or computer games that evoke emotions through taste.

"Longer term, we will be exploring how multi-sensory experiences can benefit people with sensory impairments, including those that are widely neglected in Human-Computer Interaction research, such as a taste disorder."

Catherine Bearder, Liberal Democrat MEP for south-east England, said: "I am thrilled Dr Obrist has been awarded this EU funding for her incredible research into such a ground-breaking side of science.

"This is an example of the EU investing in those research projects it sees as having great potential to change our lives."

(Source: sciencedaily.com)
About the Author
You May Also Like
JAN 21, 2021
Technology
Customizing Brains For Robots
JAN 21, 2021
Customizing Brains For Robots
Traditional robots are generally fast machinery. "The motors are fast, and they're powerful," says Sa ...
JAN 27, 2021
Clinical & Molecular DX
No Pain, All the Diagnostic Gain
JAN 27, 2021
No Pain, All the Diagnostic Gain
A recent study published in Nature Biomedical Engineering describes new microneedle patch technology that takes the &ldq ...
FEB 15, 2021
Clinical & Molecular DX
Asking Patients the Right Questions About Their Symptoms
FEB 15, 2021
Asking Patients the Right Questions About Their Symptoms
A patient is admitted to the hospital after experiencing chest pains. What are the right questions that hospital staff a ...
FEB 05, 2021
Technology
Using Technology To Advancing Biomarker Testing
FEB 05, 2021
Using Technology To Advancing Biomarker Testing
Diagnosing disease depends largely on biomarkers. These markers are complex molecules ranging from our genes to hormones ...
FEB 25, 2021
Technology
Machine Learning Identifies Autism Spectrum Disorder in Blood Biomarkers
FEB 25, 2021
Machine Learning Identifies Autism Spectrum Disorder in Blood Biomarkers
Machine learning in diagnosis is not a foreign concept. Now, scientists aim to use machine learning tools for the purpos ...
MAR 30, 2021
Clinical & Molecular DX
The COVID Eye of the Tiger
MAR 30, 2021
The COVID Eye of the Tiger
A wearable COVID screening device that uses light sensors to check for signs of infection has gotten FDA regulatory clea ...
Loading Comments...