FEB 13, 2019 10:30 AM PST

Accurate Clinical Concentration-Response Predictions for Cardiac Arrhythmias Using a Population-Based in Vitro/In Silico Model

Speaker
  • Professor, Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University
    BIOGRAPHY

Abstract

Xenobiotic-induced cardiotoxicity is a major concern for both pharmaceuticals and chemicals in the marketplace. For drugs, "Thorough QT/corrected QT (QTc)" (TQT) studies are cornerstones of clinical cardiovascular safety assessment. However, TQT studies are resource intensive, and preclinical models predictive of the threshold of regulatory concern are lacking. For other chemicals, cardiotoxicity is not routinely assessed, and is largely inferred from epidemiologic data.  We hypothesized that an in vitro model using induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a diverse sample of human subjects can serve as a "TQT study in a dish," improving cardiotoxicity assessments for both pharmaceutically and chemicals in commerce. For 10 positive and 3 negative control drugs, in vitro concentration-QTc, computed using a population Bayesian model, accurately predicted known in vivo concentration-QTc. Moreover, predictions of the percent confidence that the regulatory threshold of 10 ms QTc prolongation would be breached were also consistent with in vivo evidence. This "TQT study in a dish," consisting of a population-based iPSC-derived cardiomyocyte model and Bayesian concentration-QTc modeling, has several advantages over existing in vitro platforms, including higher throughput, lower cost, and the ability to accurately predict the in vivo concentration range below the threshold of regulatory concern.  These results demonstrate the potential for replacing a multi-million dollar clinical trial – the Thorough QT/QTc study – with an in vitro-in silico model.  Moreover, because cardiotoxicity clinical trials are not performed for non-pharmaceuticals, such a model could fill a critical gap in chemical toxicity testing.  

Learning Objectives: 

1. Describe current practices in cardiotoxicity assessment for xenobiotics.
2. Explain how induced pluripotent stem cell-derived cardiomyocytes may be useful in advancing cardiotoxicity assessment.


Show Resources
You May Also Like
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
OCT 12, 2022 9:00 AM PDT
C.E. CREDITS
OCT 12, 2022 9:00 AM PDT
Date: October 12, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) The microbiome of every food product is incredibly diverse and can include everything from innocuous background flora...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
FEB 13, 2019 10:30 AM PST

Accurate Clinical Concentration-Response Predictions for Cardiac Arrhythmias Using a Population-Based in Vitro/In Silico Model



Show Resources
Loading Comments...
Show Resources