OCT 07, 2015 09:00 AM PDT

Advancing neuroscience: functional insights from in vitro microelectrode arrays

SPONSORED BY: Axion BioSystems, Axion BioSystems
5 37 8943

  • Senior Staff Scientist, Laboratory of Dr. Fred Gage at The Salk Institute for Biological Studies
      M. Carol Marchetto is a Senior Staff Scientist in the Laboratory of Dr. Fred Gage at The Salk Institute for Biological Studies, La Jolla, CA. Carol is specifically involved in understanding the mechanisms by which human pluripotent stem cells become a fully developed functional neuron. Moreover, Carol is currently studying the behavior of different subtypes of human neurons in neurodevelopmental / neuropsychiatric diseases such as Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ). Elucidation of those mechanisms may shed a light on the unique plasticity in the human central nervous system and may help to develop strategies for drug screen platforms and potential therapy candidates for neurological diseases. Carol is also interested in understanding why our brains are so different from our closest living relatives (chimpanzees) and uses iPSC technology to study the neural cells from several nonhuman primate species and compare their behavior with neurons derived from human cells. Understanding the mechanisms governing unique properties of human neural cells will lead to a better comprehension of human brain evolution and potentially bring insights into human-specific neurodevelopmental diseases. Carol obtained her PhD degree in Genetics and Microbiology at the University of Sao Paulo (USP), Brazil. Her PhD thesis showed the use of gene therapy to revert the cancerous phenotype of malignant skin cells.
    • Senior Research Investigator, Bristol-Myers Squibb
        Dr. John Graef received his Ph.D. in Neuroscience from Wake Forest University in Winston Salem, NC where he focused on acquired changes in ion channel expression and function leading to pathophysiological states of hyperexcitability such as epilepsy. He later became a staff scientist at Targacept, a biotechnology company focused on developing small molecules targeting neuronal nicotinic receptors, where he was involved with the development of both a higher throughput brain slice electrophysiology platform and several automated electrophysiology assays. Currently, Dr. Graef is a senior research investigator at Bristol-Myers Squibb in Connecticut where he is focused on using multielectrode array platforms to develop in vitro efficacy assays for multiple discovery programs.
      • Manager, Applications Development - Axion BioSystems
          Dr. Millard received his PhD in Biomedical Engineering at the Georgia Institute of Technology and specialized in Neural Engineering. At Axion Biosystems, his team identifies, develops, and implements advanced applications for the Maestro Pro and Maestro Edge multiwell microelectrode array platforms. Their goal is to establish and refine electrophysiological assays that are scientifically rigorous, yet also accessible and scale-able. By modeling complex human systems in vitro, such as a seizure- or arrhythmia-in-a-dish, they help content experts answer questions in drug discovery, safety toxicology, genetics, or disease. Dr. Millard also serves a leadership role on the CiPA Myocyte Core Team and is a co-chair of the HESI NeuTox initiative aimed at improving in vitro neural assays for evaluating seizurogenic risk.

        DATE: October 7th, 2015
        TIME: 9am Pacific time, 12pm Eastern time

        The neuroscience field is rapidly evolving as both a burgeoning area for basic research (Parkinson’s, Alzheimer’s, Amyotrophic Lateral Sclerosis (ALS) to name just a few) and as a focus area for commercial therapeutics.  However, research and drug discovery in this field is often hindered by the low-throughput of many of the established techniques.  In addition, many of the common assays used require advanced expertise and are quite costly. 

        Enter the microelectrode array (MEA) and the Maestro platform from Axion BioSystems:  a simple approach to measuring complex, functional neural responses at the throughput level you need.  Together with integrated control software, the Maestro makes acquisition and analysis of neural networks accessible, straightforward, and scalable up to 96 wells.

        After a brief introduction to MEA technology, we will showcase two examples of successful implementation of the Maestro platform into neuroscience research and discovery programs:

        • John Graef, PhD from Bristol-Meyers Squibb will present on pain modeling using Dorsal Root Ganglia

        • Carol Marchetto, PhD from the Salk Institute will speak about using the Maestro to explore network-level signaling in an in vitro autism model

        Show Resources
        Loading Comments...