DEC 08, 2015 8:00 AM PST

WEBINAR: Advancing PD Cell Therapy: Transplanting Cryopreserved iPSC-derived Neurons

Speaker
  • Senior Research Scientist, Regenerative Medicine RxGen, Inc.
    Biography
      Dr. Wakeman's primary research goals are directed at determining the long-term value of stem cell-based therapeutics for regenerative medicine. His past work using dopamine neurons derived from pluripotent stem cells, both human embryonic stem cells and induced pluripotent stem cells (iPSC), as a cell based strategy for dopamine replacement in animal models of Parkinson's disease has consistently supported therapeutic value moving toward the clinic. Dr. Wakeman recently joined RxGen, Inc., a translational therapeutics and disease modeling company, where he is applying his expertise and experience in regenerative medicine to bridge the translational research gap using primate models of human disease. Dr. Wakeman also holds an Adjunct Assistant Professor position in the Department of Psychiatry at Yale School of Medicine.

    Abstract
    December 8th, 2015 8:00 am PT, 10:00 am CT
     
    Cryopreservation of post-mitotic, induced pluripotent stem cell-derived midbrain lineage dopamine neurons (iPSC-mDA) is a significant advancement for cell therapy in Parkinson’s disease. Here, we demonstrate that cryopreserved iPSC-mDA neurons are reliably thawed with excellent viability and maintain biochemical and physiological signatures indicative of human midbrain dopamine neurons. We also examined the engraftment potential of iPSC-mDA neurons after transplantation into both the rodent brain up to 6-months post-grafting and the nonhuman primate brain up to 3-months post-transplantation. Immunohistochemical analysis demonstrated robust graft survival and maintenance of the midbrain dopaminergic phenotype with extensive fiber innervation into the host. A long-term functional study revealed significant reversal in motor deficits in the 6-OHDA-lesioned rat model of Parkinson’s disease that persisted for up to 6-months post-transplantation. Moreover, we found no evidence of cell proliferation, indicating safety in our initial studies. IND-enabling studies are currently underway to ascertain whether cryopreserved iPSC-mDA neurons are both safe and efficacious at longer time-points in both rodent and nonhuman primate models of Parkinson’s disease. These results indicate considerable promise for the development of pluripotent cell-based therapies in Parkinson’s disease.
     

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAY 13, 2020 4:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 13, 2020 4:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 13, 2020 TIME: 7am PT, 10am ET, 4pm CEST Stem cells represent an important tool in a wide range of applications, including basic research, disease modeling, drug discovery, and reg...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources