SEP 12, 2018 12:00 PM PDT

Antimicrobial Resistance Identification, Strain Typing, and Assay Design with CLC Genomics Workbench

Sponsored by: QIAGEN
Speaker
  • Senior Scientist, Microbial Genomics, QIAGEN
    Biography
      Winnie Ridderberg, a microbiologist, received her doctoral degree from Aarhus University, Denmark. Winnie has almost a decade's experience in clinical microbiology, from working at the Department of Clinical Microbiology at Aarhus University Hospital. Winnie's primary research interest has been the microbiology of cystic fibrosis with specific focus on bacterial evolution and microbiome studies. Winnie joined QIAGEN Bioinformatics in early 2017 as a research scientist at the Microbial Genomics team.

    Abstract

    Whole genome sequencing of bacterial isolates via next-generation sequencing is becoming a standard approach for clinical microbiology and bio-surveillance labs seeking to conduct outbreak investigations and genomic characterization of isolates. Knowing the identity of a pathogen, subtype, and potential antimicrobial resistance markers it may carry is essential for monitoring pathogens. 

    CLC Genomics Workbench, along with the CLC Microbial Genomics Module, provides functionalities for molecular subtyping and epidemiological analyses of bacterial isolates in an easy to use, graphical user interface. In this webinar, we will demonstrate how to carry out taxonomic identification, multi locus sequence typing (MLST), identification of antimicrobial resistance (AMR) markers, and investigation suspect pathogens via SNP based phylogenetic analyses with associated sample metadata. We will also show how such analyses can be streamlined into a preconfigured workflow that ensures ease-of-use, reproducibility, and scalability to any sample throughput.

    Learning Objectives: 

    1. Assign sequence type and taxonomy
    2. Detect antimicrobial resistance genes
    3. Perform outbreak analyses


    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    JUL 22, 2020 10:00 AM PDT
    C.E. CREDITS
    JUL 22, 2020 10:00 AM PDT
    DATE: July 23, 2020 TIME: 10:00 am PDT The SARS-CoV-2 pandemic has taken a toll on many sectors of the medical community. As the pandemic took a grip on the laboratory, the need for diagnost...
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    Loading Comments...
    Show Resources
    Attendees
    • See more