MENU

Custom-tailored cardiomyocytes: Directed differentiation of human pluripotent stem cells into defined atrial and ventricular cardiomyocyte subtypes

Speaker
  • Head of the Stem Cell Unit, University Medical Center Göttingen
    Biography
      Lukas Cyganek is head of the Stem Cell Unit at the University Medical Center Göttingen (http://stemcellunit.de). The SCU offers support within the scope of generation, cultivation and characterization of patient-specific induced pluripotent stem cells (iPSCs), its genome editing as well as its in vitro differentiation into patient-specific cardiomyocytes. The SCU further offers their expertise in the analysis of iPSC-derived cardiomyocytes and engineered heart muscles on molecular and functional level for detailed phenotyping. Apart from the laboratory services, the SCU acts as biobank for patient-specific iPSCs and iPSC derivatives (http://dzhk.de/ressourcen/stammzellregister/).

      During his PhD at the European Neuroscience Institute Göttingen, Lukas Cyganek focused on the neurogenesis of the somatosensory system. In 2013, he joined the stem cell lab of Prof. Kaomei Guan in the cardiology at the University Medical Center Göttingen as a postdoctoral researcher, before he became head of the SCU in 2015. His recent research focusses on the generation of patient-specific as well as engineered iPSCs of and their applications in disease modelling of cardiovascular diseases, drug screening and tissue engineering.

    Abstract

    Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) as well as engineered heart muscles offer great potential for regenerative applications by CM transplantation, for the study of cardiac development and disease modeling, as well as for drug discovery and cardiotoxicity screenings in a human physiologically relevant model system. Several optimized protocols are available to efficiently differentiate iPSCs into CMs, which possess structural and functional properties of fetal CMs. However, the current methods produce a heterogeneous population of ventricular, atrial and pacemaker-like CMs strongly limiting their field of application. The generation of homogenous populations of subtype-specific iPSC-CMs and their comprehensive phenotypic comparison is crucial for a better understanding of the predominantly cardiac subtype-restricted disease mechanisms as well as for regenerative and pharmacological applications.

    The goals of this study were to develop an efficient method for the directed differentiation of human iPSCs into defined functional CM subtypes in feeder-free culture conditions and to obtain a comprehensive understanding of the molecular, cell biological and functional properties of atrial and ventricular iPSC-CMs on both single cell as well as tissue level.

    On the basis of temporal modulation of canonical WNT and retinoid acid signaling throughout differentiation of iPSCs via small molecules, we were able to guide the cardiac progenitor cells towards distinct cell fates resulting in homogeneous populations of either atrial or ventricular CMs. Transcriptome and proteome profiling as well as functional analysis of the CM subtypes via optical action potential screening, calcium imaging as well as engineered heart muscles demonstrate that atrial and ventricular iPSC-CMs highly correspond to CMs from the human atrium and ventricle, respectively.

    In summary, this study provides a comprehensive understanding of the molecular and functional characteristics of atrial and ventricular iPSC-CMs and supports the suitability of these cells for its application in more precise disease modeling, drug screening as well as for cell-based therapeutic approaches.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JUN 23, 2020 10:00 AM PDT
    C.E. CREDITS
    JUN 23, 2020 10:00 AM PDT
    DATE: June 23, 2020 TIME: 10:00am PT Human mesenchymal stromal or stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach for many diseases, s...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    Loading Comments...
    Show Resources
    Attendees
    • See more