MAY 22, 2018 8:00 AM PDT

Drug development with nuclear receptor knockout and humanized rat models

Sponsored by: Horizon Discovery
Speakers

Abstract

DATE: May 22, 2018

TIME: 08:00AM PDT

 
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that regulate the expression of Phase I (Cytochrome P450s), Phase II drug metabolizing enzymes and drug transporter genes in response to stimulation from xenobiotics including prescription drugs . PXR and CAR knockout and humanized mouse models have proven useful. However, the rat being bigger in size, is a preferred model system for studying drug metabolism and pharmacokinetics. Here, we report the creation and preliminary characterization of PXR and CAR knockout rats and PXR/CAR double knockout rats. Whereas the expression of phase I and II enzymes and transporter genes were not upregulated by nuclear receptor-specific agonists in the knockout rats, confirming the disruption of respective nuclear receptor(s). Our data demonstrate that PXR appears to suppress the basal expression levels of specific drug metabolism genes, while CAR maintains and suppresses other drug metabolism genes. Overall, our findings are in good agreement with data obtained from human primary hepatocytes, nuclear receptor knock-out cell lines and mouse knock-out models. We believe these models are a useful complement to their mouse counterparts for drug development and as importantly, for functional studies on metabolic pathways involving nuclear receptors. 
 
Learning Objectives:
  • Understand the benefit of rat models versus mouse models in functional studies on metabolic pathways
  • Demonstrate the utility of the PXR and CAR KO rat models
  • How rat hepatocytes can add value to drug development studies

Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
OCT 13, 2022 9:00 AM +08
OCT 13, 2022 9:00 AM +08
First Broadcast: Date: October 12, 2022 Time: 8:00am PDT, 11:00am EDT Second Broadcast: Date: October 12, 2022 Time: 9:00am SGT The new Embedded CryoSPARC Live, now fully integrated with t...
SEP 13, 2022 8:00 AM PDT
SEP 13, 2022 8:00 AM PDT
Date: September 13, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Preparedness against pandemic diseases demands rapid-response vaccine technology and ready-to-use analytical methods...
MAY 22, 2018 8:00 AM PDT

Drug development with nuclear receptor knockout and humanized rat models

Sponsored by: Horizon Discovery


Show Resources
Loading Comments...
Show Resources