OCT 10, 2019 9:00 AM PDT

Dynamic evolution of unstable genomes: insights from in vitro experiments and cancer genome analysis

C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Assistant Professor, Biomedical Informatics, Harvard Medical School , and Assistant Professor, Biostatistics & Computational Biology, Dana-Farber Cancer Institute
    Biography
      Cheng-Zhong Zhang obtained a Ph.D. in Chemical Engineering with a minor in Physics from Caltech. He received postdoctoral training in single-molecule biophysics in Timothy Springer's laboratory at Harvard Medical School and subsequently worked on single-cell genomics and cancer biology in Matthew Meyerson's laboratory at the Broad Institute of Harvard and MIT and at Dana-Farber Cancer Institute. He combines single-cell genomic analysis and cell biology to study genome evolution and phenotypic variation. Currently he focuses on the mechanisms and the transcriptional consequences of chromosomal abnormalities, such as rearrangement and aneuploidy, and how such events may promote tumor development.

    Abstract

    Copy-number alterations and chromosomal translocations are widespread in cancer and frequently causing oncogenic mutations that drive tumorigenesis and therapy resistance. Despite their prevalence, how these alterations arise during tumor development remains a mystery. We have gained significant insight into this question by analyzing alterations in unstable genomes at the single-cell level over one and multiple generations. Our results indicate that even a single broken chromosome in an ancestor cell can cause highly dynamic evolution and generate extensive genetic diversity in the progeny population, giving rise to all forms of alterations in cancer genomes, including focal amplification and deletion, arm-level copy-number changes, and complex rearrangements. We hypothesize that such genetic diversity may fuel the transition from pre-malignancy to cancer and present preliminary evidence from the analyses of Barrett’s Esophagus as a precursor to esophageal adenocarcinoma. Together, our results suggest that a few simple mechanisms of chromosomal evolution may be sufficient to create the enormous complexity of cancer genomes and the evolution of unstable genomes may be not totally random after all.

    Learning objectives:

    1. What makes an unstable chromosome and how does it trigger genome evolution?
    2. How does genome instability and genetic diversity promote tumor development?


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    OCT 10, 2019 9:00 AM PDT

    Dynamic evolution of unstable genomes: insights from in vitro experiments and cancer genome analysis

    C.E. Credits: P.A.C.E. CE Florida CE

    Specialty

    Immunology

    Animal Research

    Gene Sequencing

    Cell Biology

    Dna Sequencing

    Oncology

    Cancer Diagnostics

    Molecular Biology

    Biomarkers

    Cell Culture

    Cancer Research

    Dna

    Immuno-Oncology

    Clinical Diagnostics

    Gene Expression

    Geography

    North America33%

    Asia33%

    Europe33%

    Registration Source

    Website Visitors100%

    Job Title

    Student50%

    Educator/Faculty50%

    Organization

    Academic Institution100%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more