MAY 13, 2015 1:30 PM PDT

Epigenomics of common, rare, and somatic variants underlying disease and cancer

Speaker
  • Professor, Computer Science and AI Lab, Director, MIT Computational Biology Group, Broad Institute of MIT and Harvard
    Biography
      Manolis Kellis is a Professor of Computer Science at MIT, where he directs the MIT Computational Biology Group (compbio.mit.edu). He has helped direct several large-scale genomics projects, including the NIH Roadmap Epigenomics project, the comparative analysis of 29 mammals, the Encyclopedia of DNA Elements (ENCODE) project, and the Genotype Tissue-Expression (GTEx) project. He received the US Presidential Early Career Award in Science and Engineering (PECASE), the NSF CAREER award, the Alfred P. Sloan Fellowship. He obtained his Ph.D. from MIT, where he received the Sprowls award for the best doctorate thesis in computer science. He lived in Greece and France before moving to the US.

    Abstract

    Perhaps the greatest surprise of genetic studies of human disease is that 90% of top-scoring disease-associated loci lie outside protein-coding regions. This has increased the urgency of mapping non-coding DNA elements and regulatory circuits, in order to understand the molecular basis of human disease. To address this challenge, the Roadmap Epigenomics program has sought to systematically characterize the epigenomic landscape in diverse primary human cells and tissues, resulting in the annotation of 2.3M enhancer elements across 127 tissues and cell types, and tissue-specific regulatory networks linking enhancers to their upstream regulators and target genes. In this talk, I will describe the use of these annotations for understanding the molecular basis of genetic differences in common disease and cancer: (1) We uncover the mechanistic basis of GWAS hits, predicting and experimentally validating the causal variants, the cell types in which they act, the upstream regulators that target them, the downstream genes they target, and their molecular, cellular and organismal phenotypes in the context of obesity. (2) We combine genetic and epigenomic evidence to prioritize and experimentally validate weakly-associated variants in the context of cardiac repolarization phenotypes, showing that epigenomic data enables robust discovery with much smaller cohorts. (3) We use our regulatory predictions to identify new cancer genes based on recurrent somatic mutations in their linked upstream regulatory elements, revealing out-of-context de-repression as a common cancer strategy in the context of prostate cancer. These three applications, spanning the spectrum of common, rare, and somatic variants, illustrate the power and broad applicability of epigenomic annotations and regulatory networks for understanding human disease and cancer.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    FEB 24, 2021 10:00 AM PST
    C.E. CREDITS
    FEB 24, 2021 10:00 AM PST
    DATE: February 24, 2021 TIME: 10am PST Automated lab instruments such as liquid handlers and cell sorters are increasingly common in all types of laboratories, driving fast results for labor...
    DEC 03, 2020 4:30 PM PST
    C.E. CREDITS
    DEC 03, 2020 4:30 PM PST
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    MAY 13, 2015 1:30 PM PDT

    Epigenomics of common, rare, and somatic variants underlying disease and cancer


    Specialty

    Gene Expression

    Research And Development

    Big Data

    Dna

    Tumor

    Cancer Research

    Cancer

    Biomarkers

    Oncology

    Earth Science

    Gene Sequencing

    University

    Drug Discovery

    Mass Cytometry

    T-Cells

    Geography

    Asia50%

    Europe50%

    Registration Source

    Website Visitors100%

    Job Title

    Student50%

    Medical Laboratory Technician50%

    Organization

    Manufacturer - Other50%

    Academic Institution50%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more