MAY 08, 2019 1:30 PM PDT

Highly Accurate Long Sequence Reads for Comprehensive Genomic Analysis

Sponsored by: PacBio
Speaker

Abstract

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type of highly accurate (HiFi), long insert reads. Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. These highly accurate long reads allow for comprehensive variation detection from single nucleotide polymorphism to large structural variation with a single data type at 15- to 30-fold coverage. Using existing variation detection pipelines (e.g. GATK) to call variants and construct phase blocks, we achieve state of the art sensitivity and specificity for small nucleotide polymorphisms while preserving high sensitivity to detect larger structural variation (>50 bp) at single base resolution and delineate haplotype linkages. Additionally, the lack of sequence context bias and the unambiguous mappability of the longer HiFi reads allow a more complete survey of the human genome, expanding the detection of variants outside of the GIAB high confidence regions. We demonstrate the utility of this data type by sequencing to 15- to 30-fold coverage and calling all variants in the well-characterized HG002 genome. In addition to human resequencing analysis, HiFi reads may be used to assemble and call variants in plant or animal genomes, with assembly results rivaling the current long read sequencing approaches. The highly accurate raw data is directly compatible with many existing bioinformatics tools.

Learning Objectives: 

1. Understand the generation of HiFi sequence reads, and the uniqueness of this data type among sequencing technologies
2. Learn about the different use cases uniquely enabled by the new HiFi sequence data type


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
JUN 28, 2022 6:45 AM PDT
JUN 28, 2022 6:45 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
MAR 02, 2022 9:00 AM PST
C.E. CREDITS
MAR 02, 2022 9:00 AM PST
Date: March 02, 2022 Time: 9:00am (PST), 12:00pm (EST) Single cell RNA-seq is known to only capture a small fraction of the transcriptome of each cell. Often, this is due to inherent limitat...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
DEC 09, 2021 11:00 AM PST
C.E. CREDITS
DEC 09, 2021 11:00 AM PST
Date: December 09, 2021 Time: 11:00am (PDT), 2:00pm (EDT) The burden of antimicrobial resistance (AMR) has been acknowledged worldwide by leading health institutes. Besides the need for new...
MAY 08, 2019 1:30 PM PDT

Highly Accurate Long Sequence Reads for Comprehensive Genomic Analysis

Sponsored by: PacBio


Show Resources
Loading Comments...
Show Resources