MAY 08, 2019 01:30 PM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar

Highly Accurate Long Sequence Reads for Comprehensive Genomic Analysis

C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Chief Scientific Officer, Pacific Biosciences
    Biography
      Jonas Korlach was appointed Chief Scientific Officer of Pacific Biosciences in July 2012. He was previously a Scientific Fellow, supporting commercial development of the PacBio RS II system and performing research aimed at developing new applications for SMRT technologies. He co-invented the SMRT technology with Stephen Turner, Ph.D., Pacific Biosciences Founder and Chief Technology Officer, when the two were graduate students at Cornell University. Dr. Korlach joined Pacific Biosciences as the company's eighth employee in 2004. Previously, he was a Postdoctoral Researcher at Cornell University.

      Dr. Korlach is the recipient of multiple grants, an inventor on 70 issued U.S. patents and 61 international patents, and an author of over 70 scientific studies on the principles and applications of SMRT technology, including publications in Nature, Science, and PNAS. In 2013, Dr. Korlach was honored by the Obama White House as an Immigrant Innovator "Champion of Change." He received both his Ph.D. and his M.S. degrees in Biochemistry, Molecular and Cell Biology from Cornell, and received M.S. and B.A. degrees in Biological Sciences from Humboldt University in Berlin, Germany.

    Abstract:

    Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type of highly accurate (HiFi), long insert reads. Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. These highly accurate long reads allow for comprehensive variation detection from single nucleotide polymorphism to large structural variation with a single data type at 15- to 30-fold coverage. Using existing variation detection pipelines (e.g. GATK) to call variants and construct phase blocks, we achieve state of the art sensitivity and specificity for small nucleotide polymorphisms while preserving high sensitivity to detect larger structural variation (>50 bp) at single base resolution and delineate haplotype linkages. Additionally, the lack of sequence context bias and the unambiguous mappability of the longer HiFi reads allow a more complete survey of the human genome, expanding the detection of variants outside of the GIAB high confidence regions. We demonstrate the utility of this data type by sequencing to 15- to 30-fold coverage and calling all variants in the well-characterized HG002 genome. In addition to human resequencing analysis, HiFi reads may be used to assemble and call variants in plant or animal genomes, with assembly results rivaling the current long read sequencing approaches. The highly accurate raw data is directly compatible with many existing bioinformatics tools.

    Learning Objectives: 

    1. Understand the generation of HiFi sequence reads, and the uniqueness of this data type among sequencing technologies
    2. Learn about the different use cases uniquely enabled by the new HiFi sequence data type


    Show Resources
    You May Also Like
    MAY 16, 2019 04:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    FEB 26, 2019 09:00 AM PST
    C.E. CREDITS
    FEB 26, 2019 09:00 AM PST
    DATE:  February 26, 2019TIME:   9:00am PST, 12:00pm EST In an era of increasingly high-throughput, large-scale biology, with companies, government and non-prof...
    MAY 21, 2019 07:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 21, 2019 07:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 21, 2019TIMEL 7:00am PT, 10:00am ET Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioriti...
    NOV 21, 2019 09:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 21, 2019 09:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 21, 2019TIME: 9:00am PST, 12:00pm EST Multiple Myeloma is a disease of terminally differentiated plasma cells with the massive production of monoclonal immunoglobu...
    MAR 26, 2019 02:00 PM PDT
    C.E. CREDITS
    MAR 26, 2019 02:00 PM PDT
    DATE:  March 26, 2019TIME:  2:00pm PDT, 5:00pm EDT  Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time t...
    MAR 05, 2019 09:00 AM PST
    C.E. CREDITS
    MAR 05, 2019 09:00 AM PST
    DATE:  March 5, 2019TIME:  09:00am PST, 12:00pm EST MicroRNA(miRNA) are short non-coding single stranded RNA molecules that regulate gene expression at the post tran...
    Loading Comments...
    Show Resources
    Event Countdown
    • 0 Days
    • 0 Hours
    • 0 Minutes
    • 0 Seconds