AUG 30, 2016 08:00 AM PDT

Human PSC-based disease modeling to study X-linked Dystonia-Parkinsonism

Speakers
  • Instructor in Neurology, Harvard Medical School
    Biography
      After receiving his PhD in Neuroscience at the VU University Amsterdam in the Netherlands in 2008, Dr. Hendriks joined the lab of Dr. Paola Arlotta at the Center for Regenerative Medicine of Massachusetts General Hospital (MGH) in Boston to study neuronal development focusing on neuronal differentiation of human pluripotent stem cells. In 2011, Dr. Hendriks joined the Harvard Stem Cell Institute (HSCI) iPS Core facility with Dr. Chad Cowan at Harvard University in Cambridge, where initially he worked on developing and implementing foot-print free somatic cell iPSC reprogramming methods. Dr. Hendriks also initiated and managed the hPSC genome editing service for 2 years at HSCI before moving to his current position as a Harvard Medical School Instructor in Neurology at the MGH Collaborative Center for X-Linked Dystonia Parkinsonism in 2014.

    Abstract:
    The isolation of human embryonic stem cells (hESCs) and the discovery of human induced pluripotent stem cell (hiPSC) reprogramming have sparked a renaissance in stem cell biology, in vitro disease modeling, and drug discovery. In general, hPSC-based disease models are well-suited to study genetic variation. Studies commonly compare patient-derived hiPSCs, e.g., with a disease-causing genetic mutation, and (age-matched) control subject-derived hiPSCs, typically differentiated to the disease-affected cell type, e.g., neurons. A major caveat of this disease-modeling strategy is the variability of differentiation propensities and phenotypic characteristics, even in hPSCs derived from the same donor. Still, even if the cellular phenotype of a given mutation is strong and highly penetrant, it may be lost due to confounding effects of differences in genetic background of unrelated hPSC lines. A very powerful approach to overcome this hurdle is to use custom-engineered endonucleases, such as CRISPR/Cas9 that enable precise and programmable modification of endogenous hPSC genomic sequences. In our lab we use hPSC-based disease modeling to study the neurological movement disorder dystonia, in particular X-linked Dystonia Parkinsonism (XDP). In this talk I will show how we use hPSC-based disease modeling in combination with CRISPR/Cas9 gene editing, to elucidate the underlying molecular pathogenesis of XDP. I will also discuss some of the potential problems one might face using hPSC-based disease modeling in combination with gene editing. 
     

    Show Resources
    You May Also Like
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    Loading Comments...