Human PSC-based disease modeling to study X-linked Dystonia-Parkinsonism

Speakers
  • Instructor in Neurology, Harvard Medical School
    Biography
      After receiving his PhD in Neuroscience at the VU University Amsterdam in the Netherlands in 2008, Dr. Hendriks joined the lab of Dr. Paola Arlotta at the Center for Regenerative Medicine of Massachusetts General Hospital (MGH) in Boston to study neuronal development focusing on neuronal differentiation of human pluripotent stem cells. In 2011, Dr. Hendriks joined the Harvard Stem Cell Institute (HSCI) iPS Core facility with Dr. Chad Cowan at Harvard University in Cambridge, where initially he worked on developing and implementing foot-print free somatic cell iPSC reprogramming methods. Dr. Hendriks also initiated and managed the hPSC genome editing service for 2 years at HSCI before moving to his current position as a Harvard Medical School Instructor in Neurology at the MGH Collaborative Center for X-Linked Dystonia Parkinsonism in 2014.

    Abstract:

    The isolation of human embryonic stem cells (hESCs) and the discovery of human induced pluripotent stem cell (hiPSC) reprogramming have sparked a renaissance in stem cell biology, in vitro disease modeling, and drug discovery. In general, hPSC-based disease models are well-suited to study genetic variation. Studies commonly compare patient-derived hiPSCs, e.g., with a disease-causing genetic mutation, and (age-matched) control subject-derived hiPSCs, typically differentiated to the disease-affected cell type, e.g., neurons. A major caveat of this disease-modeling strategy is the variability of differentiation propensities and phenotypic characteristics, even in hPSCs derived from the same donor. Still, even if the cellular phenotype of a given mutation is strong and highly penetrant, it may be lost due to confounding effects of differences in genetic background of unrelated hPSC lines. A very powerful approach to overcome this hurdle is to use custom-engineered endonucleases, such as CRISPR/Cas9 that enable precise and programmable modification of endogenous hPSC genomic sequences. In our lab we use hPSC-based disease modeling to study the neurological movement disorder dystonia, in particular X-linked Dystonia Parkinsonism (XDP). In this talk I will show how we use hPSC-based disease modeling in combination with CRISPR/Cas gene editing, to elucidate the underlying molecular pathogenesis of XDP. I will also address some of the potential problems one might face using hPSC-based disease modeling in combination with gene editing.  


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    Loading Comments...
    Show Resources