MAY 30, 2018 07:30 AM PDT

Keynote Presentation: Robotic Automation of Human Cell Culture for Regenerative and Reparative Medicine

C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Professor and Associate Director of Clinical Chemistry and Toxicology, Univerisity of Virgina School of Medicine
    Biography
      Dr. Robin Felder is a Professor of Pathology and Associate Director of Laboratory Medicine at the University of Virginia-UVA, and is Chair of Medical Automation.org. Dr. Felder received his PhD in Biochemistry from Georgetown University. He has published over 300 papers, reviews, and chapters, and co-edited 3 textbooks on medical automation. He has been awarded 27 patents and has founded 9 biotech companies, including 2 non-profit organizations including the Association for Laboratory Automation (SLAS) (and its journal JALA) as well as Medical Automation.org. He has received numerous awards including the Engelberger Robotics Award, UVA's Innovator of the Year Award, and the Annual Research Awards from the American Association for Clinical Chemistry (AACC), and National Academy for Clinical Biochemistry (NACB).

    Abstract:

    Growing living human cells in vitro for basic research, drug discovery and reparative/regenerative medicine is challenged by the difficulty in developing methods for reproducibly and cost effectively growing large number of human cells in a way that represents in vivo cellular environment.  3D cell culture is a discipline that will ultimately replace 2D cell culture (culture performed on flat plastic surfaces) since the use of biologically relevant surfaces, substances, geometries, and stresses produces cells which more reliably express their in vivo phenotypes and physiology (PMIDs 12931155; 24912145).  Automation and robotics will be necessary to provide parallel and/or random access processing of many cell lines simultaneously so that they will better represent human physiology and meet the FDA’s evolving “good laboratory practice” (GLP) and “good manufacturing practice” (GMP) standards under development for cultured cells.  Automation and robotics will be developed in conjunction with new cell culture methods including the use of 3D technologies incorporating biomimetic substrates, xeno-free cell culture media, shear forces, and oxygen concentrations that more closely mimics the in vivo environment. The inherent design of our fully automated next generation 3D cell culture system will virtually eliminate cell misidentification, contamination and infection, while optimizing cell growth and phenotype in order to provide many industries, including the reparative/regenerative medical industries with the highest quality products.


    Learning Objectives: 

    1.  You will learn the advantages of automated 3D cell culture over conventional cell culture methods.
    2.  What kinds of control systems will be employed to enable a robot to perform the complex and demanding tasks associated with human cell culture.


    Show Resources
    You May Also Like
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    JUN 26, 2019 09:00 AM PDT
    C.E. CREDITS
    JUN 26, 2019 09:00 AM PDT
    DATE: June 26, 2019TIME: 9:00am PDT, 12:00pm EDT An excessive number of software solutions are available to help manage your clinical, biobank, or biorepository sample inform...
    Loading Comments...
    Show Resources