MAY 31, 2018 10:30 AM PDT

Multi-Tissue Experiments in a Scalable and Automation-Compatible Format

Presented at: Lab Automation 2018
Speaker
  • Head of Department, InSphero AG
    Biography
      Olivier Frey leads the Technology and Platforms group at InSphero AG, Switzerland. Before joining InSphero, he was group leader at the Department of Biosystems Science and Engineering of ETH Zurich, Switzerland. In the Bio Engineering Laboratory of Prof. Andreas Hierlemann he was responsible for the development of integrated microfluidic systems for single cell handling and 3D tissue cultures. Included are in particular multi-tissue systems, or so-called "Body-on-a-Chip" configurations based on 3D microtissue spheroids for microtissue culturing, analysis and interaction. Olivier Frey received his Doctoral degree in Micro Engineering from EPF Lausanne, Switzerland, Laboratory of Prof. Nico de Rooij.

    Abstract

    The next step towards more biomimetic in vitro models is the design of multi-organ devices, which allow for communication of different tissue types. Combining physiologically relevant organ models in perfusion systems bears technological challenges and often leads to complicated culturing setups. Complex systems require trained personnel, feature lower reproducibility and make integration into scalable routine processes difficult. The presented multi-tissue platform features microfluidic channels and chambers that were specifically engineered for culturing of microtissue spheroids under physiological flow conditions. The platform has a plate-format, is fabricated completely out of polystyrene and complies with SBS-standard dimensions. Each plate includes 8 parallel channels, each channel contains 10 microtissue compartments. The compartments have minimal dead volume (<2 uL) and the so-called ‘StandingDropPort’ render microtissues individually accessible, so that a robotic pipet tip can be used for parallelized microtissue loading and retrieval. Open media reservoirs are located at both ends of each channel. Perfusion flow is generated through tilting the device back and forth on an automated system inside an incubator. Multiple devices can be operated in parallel, which increases the number of conditions and statistical replicates that can be executed in parallel. The concept allows for on-demand interconnection of up to 10 identical or different microtissues per channel in a very flexible way. With the broad range of available spheroid-based organ-models, a variety of pre-clinical testing applications can be served using the very same platform.
     

    Learning Objectives: 

    1. Understanding the physiological relevance and handling of 3D microtissue spheroids
    2. How to perform multi-tissue experiments in a scalable and reproducible way


    Show Resources
    You May Also Like
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    DEC 09, 2020 9:00 AM PST
    C.E. CREDITS
    DEC 09, 2020 9:00 AM PST
    DATE: December 09, 2020 TIME: 09:00am PST Hematopoietic stem cells (HSCs) ensure homeostasis of blood throughout life. In this webinar, we share insights into the smart and easy isolation, c...
    MAY 31, 2018 10:30 AM PDT

    Multi-Tissue Experiments in a Scalable and Automation-Compatible Format

    Presented at: Lab Automation 2018

    Specialty

    Genetics

    Biomarkers

    Biochemistry

    Infectious Disease

    Research And Development

    Blood Brain Barrier

    Gene Editing

    3D Printing

    Cell Signaling / Transduction

    Human Biology

    Molecular Diagnostics

    Biotechnology

    Neuroscience

    Wellness

    Bioinformatics

    Geography

    North America50%

    Europe50%

    Registration Source

    Website Visitors100%

    Job Title

    Engineer50%

    Consultant50%

    Organization

    Academic Institution50%

    Biotech Company50%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more