MAY 11, 2016 06:00 AM PDT

Natural Human Gene Knockouts and the Discovery of New Drug Targets

C.E. CREDITS: P.A.C.E. CE
Speakers
  • Head of Translational Genetics, Regeneron Genetics Center
    Biography
      Frederick Dewey received his AB in Chemistry and Physics from Harvard University, and MD, with concentration in cardiovascular and pulmonary sciences, from Stanford University. He received clinical training in internal medicine and cardiovascular medicine at Stanford Hospital and Clinics, and research training in human genetics via the Stanford Clinical Investigator Pathway. His research work has focused on gene discovery in familial and complex cardiovascular disease using high throughput sequencing, and application of exome and genome sequencing in clinical care. He joined the Regeneron Genetics Center, a wholly-owned subsidiary of Regeneron Pharmaceuticals, in 2014 and currently leads the Translational Genetics group.

    Abstract:

    It has been estimated that every human being carries ~20 rare “natural human gene knockouts”-DNA variants in protein-coding regions of the genome that partially or completely inactivate gene products. When coupled with information about clinical phenotypes, these natural human gene knockouts can illuminate biological function of geness and further our understanding of diseass. In select cases, “protective” gene-inactivating mutations may guide the way to new therapeutic targets or confirm existing targets. With the advent of next generation sequencing facilitating genomics on massive scales, properly powered studies of human knockouts are finally possible. Here, we describe an integrated approach to sequencing-based discovery of naturally occurring human knockouts that spans genetic trait architectures, from small collections of highly related individuals with extreme phenotypic traits, to geographically- and reproductively-isolated “founder” populations harboring frequent instances of highly impactful alleles, to large scale sampling of outbred populations with rich “real-world” phenotypic data captured in electronic medical records. In collaboration with the Geisinger Health System and academic groups worldwide, we report early findings from whole exome sequencing of over 100,000 individuals spanning these population architectures and study designs. We find that the majority of genes encoding drug targets harbor mutations that are predicted to partially or completely inactivate their gene products. We highlight examples of protective and harmful clinical associations with inactivating mutations in these genes that support and invalidate therapeutic targets. We also describe exome-wide scans for gene-inactivating mutations that nominate novel candidate genes and targets in multiple clinical traits and diseases. These early insights suggest that large-scale discovery of human gene knockouts will contribute to the next wave of drug target discovery and validation.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    AUG 13, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 13, 2019 09:00 AM PDT
    DATE: August 13, 2019TIME: 9:00am PT, 12:00pm ET, 5:00pm BST Molecular complexes are major constituents of cells, hence unraveling their mechanisms is key to fuller comprehension of c...
    Loading Comments...
    Show Resources