MENU

Patient-specific hiPSCs for understanding diabetes disease mechanisms

Speaker
  • Independent Fellow, IMCB, A*STAR and Adjunct Assistant Professor at SBS and LKCMedicine, NTU, and NUS Medicine
    Biography
      Adrian Teo is an Independent Fellow at IMCB and an Adjunct Assistant Professor at NTU and NUS. He obtained his B.Sc. (1st Class) from NUS and then worked on human pluripotent stem cells (hPSCs) with Ray Dunn, Ph.D., and Alan Colman, Ph.D., at ES Cell International Pte. Ltd. followed by IMB. In April 2008, he joined the laboratory of Ludovic Vallier, Ph.D., at the University of Cambridge to pursue his Ph.D., under the AGS(O) scholarship. Concurrently, he was also an Honorary Cambridge Commonwealth Trust Scholar. He completed his Ph.D. in July 2010 and joined the laboratory of Ray Dunn, Ph.D., at IMB as a postdoctoral fellow before heading to the laboratory of Rohit Kulkarni, M.D. Ph.D., at Joslin Diabetes Center, Harvard Medical School. During his fellowship, he obtained HSCI seed grants and a JDRF fellowship to pursue his research interests in using hPSCs for in vitro disease modelling of diabetes. He currently runs the Stem Cells and Diabetes Laboratory with a major focus on differentiating human pluripotent stem cells (hPSCs) into pancreatic cells and cell types affected in diabetic complications to dissect the pathology of diabetes and its complications

    Abstract

    Diabetes is a debilitating chronic disease that is spirally out of control. Fundamentally, the progressive failure of pancreatic beta cells results in decreased insulin secretion, ultimately giving rise to hyperglycaemia and overt diabetes. Given that there is a lack of access to pancreatic islets from diabetic patients with defined gene mutations or variants, the use of diabetic-patient-specific human induced pluripotent stem cells (hiPSCs) and their differentiation into pancreatic beta-like cells will provide an inexhaustible source of material for 1) in vitro disease modelling to study diabetes-related mechanisms, 2) developing small molecules that can enhance human beta cell replication and even 3) transplantation therapy.

    Here, I will highlight our efforts in recruiting various types of diabetic patients, obtaining skin biopsies or peripheral blood mononuclear cells (PBMCs), deriving hiPSCs from these somatic cells and differentiating them into pancreatic cells. I will also provide an example of subjecting these diabetic-hiPSCs through a pancreatic differentiation protocol for in vitro disease modelling of diabetes. Overall, it will be evident that disease modelling of human diabetes via the use of diabetic-hiPSCs will provide novel insights into the development of diabetes and its complications.


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    MAR 18, 2021 8:00 AM PDT
    C.E. CREDITS
    MAR 18, 2021 8:00 AM PDT
    DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...

    Patient-specific hiPSCs for understanding diabetes disease mechanisms


    No demographic data is available yet for this event.


    Show Resources
    Loading Comments...
    Show Resources