SEP 27, 2017 6:00 AM PDT

Regulation of microtubule plus-end dynamics during axon guidance and cell migration

Presented at: Cell Biology 2017
Speaker
  • Assistant Professor of Biology, Boston College
    Biography
      Laura Anne grew up in the San Fernando Valley outside of Los Angeles. She discovered her love of academia and biomedical research while an undergrad at the University of California, San Diego. In the lab of Dr. Bill Schafer, she studied the neural circuitry underlying worm egg-laying behavior. In 2008, Laura Anne received her PhD from the Massachusetts Institute of Technology, working in the lab of Dr. Hazel Sive at the Whitehead Institute, where she pioneered research studying early brain ventricle morphogenesis. Laura Anne then did post-doctoral research in the Department of Cell Biology at Harvard Medical School, in the labs of Dr. David Van Vactor and Dr. Gaudenz Danuser, where she became fascinated by the inner workings of the neuronal growth cone. In 2014, Laura Anne began as an Assistant Professor in Biology at Boston College, and she has obtained research funding from the NIH, American Cancer Society, and March of Dimes. Her current research focuses on the cytoskeletal mechanisms that promote cell migration in neurons, neural crest cells, and metastatic cancer cells.

    Abstract

    A fundamental question in neuronal development is how growth cone cytoskeletal dynamics are coordinated to promote accurate axonal navigation. To address this question, we focus on microtubule plus-end tracking proteins (+TIPs), which may play a key role in axon guidance. We determined that TACC3 is a +TIP that promotes microtubule polymerization and axon outgrowth. We have begun to test the hypothesis that TACC3 spatially restricts microtubule polymerization in response to guidance signals in Xenopus laevis axons in vivo and ex vivo. We demonstrate that TACC3 is required to promote axon outgrowth and prevent spontaneous retractions. Additionally, we find that manipulation of TACC3 levels interferes with the growth cone response to axon guidance cues. Finally, we observe that ablation of TACC3 causes pathfinding defects in Xenopus laevis embryos. Together, our findings suggest that TACC3 functions as an axon guidance-regulating factor in embryonic neurons by spatially promoting microtubule polymerization dynamics.


    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    AUG 25, 2020 8:00 AM PDT
    C.E. CREDITS
    AUG 25, 2020 8:00 AM PDT
    DATE: August 25, 2020 TIME: 8:00am PDT, 10:00am CDT, 11:00am EDT Recombinant lentivirus (LV) and adeno-associated virus (AAV) are critical components of cell and gene therapies, which show g...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    Loading Comments...
    Show Resources
    Attendees
    • See more