JUN 21, 2018 10:30 AM PDT

Setting Up Next-Generation Sequencing for the Needs of Routine Molecular Diagnostics With a Focus on the Suitability of the GeneReader NGS System for Lung Cancer Patients

SPONSORED BY: QIAGEN
C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Head of the Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Head of the Human Biobank Unit, Pasteur Hospital
    Biography
      Paul Hofman obtained his MD degree in 1989 at the University Côte d'Azur (Nice, France) and his PhD in 1994 at the University of Montpellier I (Montpellier, France). Having completed research fellowships in the Department of Pathology at the Brigham and Women's Hospital (Harvard Medical School, Boston, USA) and at the Max Planck Institut (Tubingen, Germany), he became full Professor of Pathology and Head of a research team at the Inserm 1081/UMR CNRS 7284 (IRCAN; www.ircan.org), located at the Comprehensive Cancer Center Antoine Lacassagne (Nice) in 1995. His group's research focus is lung cancer pathophysiology and the discovery of predictive and prognostic biomarkers. Paul is also head of the Hospital-related Biobank (BB-0033-00025) and of the Laboratory of Clinical and Experimental Pathology at Nice Hospital as well as being Director of the OncoAge Consortium in France (www.oncoage.org). He has published more than 450 peer review publications.

    Abstract:

    The introduction of targeted therapies into the clinical management of lung adenocarcinoma has had a massive impact on patient care. Multiple driver mutations are now druggable and treatments differ depending on the mutational pattern of each patient with advanced lung adenocarcinoma. Consequently, mutational analysis is critical for treatment decisions in clinical routine practice. While several techniques have been developed and introduced into clinical care over the past few years, next-generation sequencing (NGS) has evolved to become the new standard in molecular diagnostics for most institutions. Thus, the development of targeted sequencing panels, which only cover specific and relevant mutations, make NGS affordable and suitable for high-throughput processing. There is no consensus system for individual sample tracking and the storage of meta information which is therefore required to be set up in each diagnostic laboratory individually. Additionally, setting up a NGS workflow requires well-trained personal, complex workflows and the need for specialized bioinformatics to analyze and interpret the results. Two different sequencing techniques were established initially for NGS in clinics, the Ion Personal Genome Machine (PGM) and Illumina sequencing. While both systems are based on fundamentally different sequencing principles, their purpose for clinical mutation analysis is quite similar. However, both systems require each diagnostic laboratory to develop their own workflow, leading to a plethora of “homebrew” solutions as different devices for sample preparation can be integrated in the respective workflows

    QIAGEN developed a novel sequencing system, the GeneReader, specifically designed for the needs of routine molecular diagnostics. In contrast to the existing solutions, the GeneReader system provides a complete workflow from sample preparation to data analysis. This reduced hands-on time during sample preparation, increased sample traceability and reproducibility address many of the issues of “homebrew” NGS solutions. Bioinformatic analysis is well integrated into the workflow and automated to strongly improve the quality and efficacy. The GeneReader can easily be installed and integrated into a routine pathology laboratory. Only limited training of the technical personnel is necessary. The high traceability is a strong advantage for daily routine sequencing and maybe very helpful for easily getting an accreditation according to the ISO 15189 norm. 

    Here we will present the main characteristics of the GeneReader NGS system and the potential for using this system in daily practice. We demonstrate the suitability of the GeneReader NGS system in routine in a clinical and molecular pathology laboratory setting.


    Show Resources
    You May Also Like
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    MAY 02, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 02, 2018 08:00 AM PDT
    Immunohistochemistry protocols, which utilize antibodies to visualize proteins in tissue sections, have many steps that need optimized to prevent non-specific background effects, artifacts, o...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    Loading Comments...
    Show Resources