JUN 03, 2020 12:00 PM PDT

Single cell multiomic analysis of T-cell exhaustion

Sponsored by: BD
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

A key step in the clinical production of CAR T cells is the expansion of engineered T cells. To generate enough cells for viable adoptive cell therapy, cells must be robustly stimulated, which raises the risk of inducing T-cell exhaustion and reducing therapeutic efficacy. We sought to answer fundamental questions about the impact of in vitro manipulation on T-cell identity to by performing single-cell multiomic analysis using BD® AbSeq and BD Rhapsody™ Single-Cell Analysis system to simultaneously measure expression of 38 proteins and 399 genes in human T cells expanded in vitro. Comprehensive immunophenotypic and transcriptomic analysis at day 0 enabled a refined characterization of T-cell maturational states and the identification of a donor-specific subset of terminally differentiated T cells that would have been otherwise overlooked using canonical cell classification schema. As expected, T-cell activation induced downregulation of naïve-associated markers and upregulation of effector molecules, proliferation regulators, co-inhibitory and co-stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins and genes identifying unique states of activation defined by markers temporarily expressed upon 3 days of stimulation, markers constitutively expressed throughout chronic activation, and markers uniquely up-regulated upon 14 days of stimulation. These data indicate heterogeneity and plasticity of chronically stimulated T cells in response to different kinetics of activation. We demonstrate the power of a single-cell multiomic approach to comprehensively characterize T cells and to precisely monitor changes in differentiation, activation and exhaustion signatures in response to different activation protocols. For Research Use Only. Not for use in diagnostic or therapeutic procedures. BD, the BD Logo, and Rhapsody are trademarks of Becton, Dickinson and Company or its affiliates. © 2020 BD. All rights reserved.

Learning Objectives:

1. The complexity of T-cell exhaustion and utility of multiomic approaches in studying complex biological processes such as T-cell exhaustion

2. Use of unsupervised data analysis approaches in analyzing heterogeneous cell population

3. Comparing and contrasting data from traditional flow cytometry and BD® AbSeq


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
OCT 27, 2021 6:00 AM PDT
C.E. CREDITS
OCT 27, 2021 6:00 AM PDT
Date: October 27, 2021 Time: 6:00 AM PDT, 9:00 AM EDT Etanercept is a recombinant Fc fusion protein therapeutic that has a complex distribution of post-translation modifications (PTM), such...
Loading Comments...
Show Resources