MAR 16, 2017 1:30 PM PDT

Humans and fish to study the cellular mechanisms of neuromuscular development

Presented at: Neuroscience 2017
Speaker
  • Assistant Professor of Pharmacology and Physiology, and Integrative Systems Biology, GW Institute for Neuroscience
    Biography
      M. Chiara Manzini is a human geneticist and cell biologist whose laboratory focuses on the molecular mechanisms of brain development. Her group at the George Washington University, identified disease-causing mutations in families affected by brain malformations, intellectual disability and autism. She uses both zebrafish and mouse models to study the cellular function of these disease genes. She obtained her undergraduate degree in Molecular Biology from the University of Pavia in Italy, a PhD in Neurobiology and Behavior from Columbia University in New York City, and completed postdoctoral training in neurogenetics at Boston Children's Hospital/Harvard Medical School in Boston. She joined the GWU faculty in 2013.

    Abstract

    Studying the genetics of rare congenital disorders disrupting cognitive function has led to the identification of multiple disease genes that helped us better understand the mechanisms underlying prenatal and postnatal development. While genetic studies have revealed great heterogeneity, the advent of next-generation sequencing genetic studies has greatly increased the pace of discovery.

    Our research focuses on a group of genetically heterogeneous neuromuscular disorders, termed dystroglycanopathies. In these disorders loss or reduction of glycosylation of the transmembrane glycoprotein alpha-dystroglycan cause muscular dystrophy, associated with severe brain and ocular malformations and intellectual disability. The study of the genetics of dystroglycanopathies has been instrumental in defining that dystroglycan’s interactions with the extracellular matrix (ECM) are a key regulator of cell differentiation in the brain and retina. Twenty different genes can be mutated in dystroglycanopathies and most of these genes have a direct role in controlling assembly of glycans on the dystroglycan protein. These glycans mediate interactions with laminin and other ECM components, and different glycosylation patterns instruct protein-protein interactions. However, to date only half of dystroglycanopathy cases can be explained by mutations in the known genes and it is still unclear how most of these genes affect glycosylation processes involved in ECM function in the brain.

    This presentation will focus on our recent work on gene identification in dystroglycanopathies and related neuromuscular disorders using a combination of next-generation sequencing and functional validation in the zebrafish to study how the mutated genes affect brain development.


    Show Resources
    You May Also Like
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    Loading Comments...
    Show Resources
    Attendees
    • See more